
Mexml
ME XML Analyzer

Users Manual

Joalah Designs LLC
January 2015

Table of Contents

Introduction...7
Overview..7
Project Analysis..8

Program Structure..8
Variable Usage Report..9
Report Examples..10

Program Structure Report..10
Variable Usage Report...11

Licensing..14
Validation..17

Installation...18
Program...18

Overview...18
Process...19
Installed Files..23

Licenses ..24
Trial...24
Standard...24

Preparation For Use..25
Directory setup..25

_Mexml...26
Commands...26
LibraryDefs...26

Project...26
ExportedFiles...26
LocalFiles...27
Results..27

Exporting Files From Machine Edition...28
Program Blocks..29
EGD Configuration...31
Hardware Configuration...33
Variables...35

Analysis Command File..37
Introduction..37
Deconstruction...38

Architecture..38
Arguments..38

Example Invocation..41

MexmlSample Project...43

Overview..43
Contents..44
Program Errors..46

Program Structure report...46
Variables report...47

Tips And Tricks..51
Program Blocks..51

Program bock call order...51
File processing order..51

Documentation..52
EGD Exchanges..52
Hardware I/O..53
Bit Mappings..54
Uninitialized variables...55
Unused I/O...57
Unused variables..58
Program Block Interface...60
Simultaneous Multiple Filtering Criteria...61

Compare two systems...63

Program Arguments..67
Source File Arguments...68

[-X <ProgramFile(s)>] Program Files to process..68
[-E <EGDFile>] EGD Configuration file...69
[-H <HardwareFile>] Hardware Configuration file..70
[-P <PreloadFile(s)>]+ Preload Variables..71
[-V <VarForceFile(s)>]+ Variable Force Definitions...72
[-I <InterfaceFile(s)>]+ Function Block Interface Definitions..75

Source Processing Arguments..77
[-xKA] Skip analysis of all Program Blocks..77
[-xKF] Skip processing of Function Blocks..78
[-aBD] Auto-Generated Variables Blank Descriptions...79

Source Message Arguments...80
[-mV] Generate All Program Structure messages..80
[-mNW] Suppress Program Structure Warning messages..81
[-mQ] Suppress All Program Structure messages...82
[-mRN <NameRegex>] Filter source file messages by Name Regex..............................83
[-xLB] Ladder Logic – Body (Code) messages..84
[-xLI] Ladder Logic - Interface messages..85
[-xLD] Ladder Logic - Derived data type and UDT messages...86
[-xLA] Ladder Logic - Annotate instructions with their IDs..88
[-xLRS] Ladder Logic – Suppress Rung Numbers...90
[-xSB] Structured Text – Body (Code) messages...92
[-xSI] Structured Text - Interface messages...93
[-xSD] Structured Text - Derived data type and UDT messages.....................................94

[-xSA] Structured Text - Annotate code with Read/Write markers..................................96
[-xFO] File Processing Order messages..97
[-eM] EGD Configuration messages...98
[-eDS] Suppress EGD Configuration Descriptions...100
[-hM] Hardware Configuration messages..101
[-hDS] Suppress Hardware Configuration Descriptions..102
[-pM] PreLoad Variable messages...103
[-vM] Variable Force messages..104
[-iM] Function Block Interface Definition messages..105
[-kCP] Linked Variable Chaining and Propagating messages.......................................106
[-rM] Variable Report messages...109
[-O <OutputFile>] Program Structure report file..110

Program Structure Report Arguments...111
[-sCO] Program Block Call Order...111
[-sMA] Mapped Address variables...112

Variable Access Report Generation Arguments..113
[-rV] Generate Variable Access Reports...113
[-rD <ReportDir>] Base directory for all report files...114
[-rP <ReportParamFile>] Specify parameters for multiple reports................................115

Variable Access Report Parameter Arguments...116
[-fA <AccessCriteria>] Filter report by each variables Access Criteria..........................118
[-fM <MemoryCriteria>] Filter report by each variables Memory Criteria......................120
[-fRN <NameRegex>] Filter report by Name Regex..121
[-fRA <AddressRegex>] Filter report by PLC Address Regex.......................................122
[-fRD <DescriptionRegex>] Filter report by Description Regex.....................................123
[-fT <TypeCriteria>] Filter report by each variable's Type Criteria.................................124
[-rS <SortCriteria>] Sort report by specified order..125
[-rCS <ColumnSelect>] Select columns included in the report.....................................126
[-rCW <ColumnWidth>] Select minimum width of report columns...............................127
[-rC] Generate reports in CSV format...128
[-rE] Explain the meanings of columns in the report data..129
[-rF <ReportFile>] Variable Access report file..135

Other Arguments...136
[-pv] Display the program version..136
[-lS] Display the chosen license...137
[-lD] Display all licenses..138
[-?] Display the program help...139

Introduction
Overview

The ME XML Analyzer (Mexml) is a stand-alone program used to analyze Machine Edition
projects with the aim of identifying and documenting:

• Potential programmer mistakes

• Program Block software interfaces

• Hardware and EGD interfaces

• Program call-trees

• Program file dependency order

• Usage and definition of all variables

It does this by processing various files exported from a Machine Edition project and
building up an internal model of variable and program file usage. By generating selected
reports from this internal model you can highlight different aspects of the Machine
Edition project. By generating the same reports from different projects or even different
versions of the same project, you can identify changing patterns of usage.

The types of potential programmer mistakes that Mexml can help identify include:

• Variables that have been read, but not written to.

• I/O that has been defined but not used.

• Writing/Reading data beyond a defined variable or address.

• Function Block variables that are global to all instances of a Function Block.

• Float and DINT variables that have not been spaced 2 registers apart.

• Aliased variables that are missing their parent variable.

• Variables that have been mapped on top of each other (which when intentional,
can be used to document such things as bit mappings)

By processing only a selected group of program blocks, Mexml can be used to identify
variables that are external to those blocks. This allows documenting the data that flows
into or out of a group and hence identifies the software interface of those program
blocks.

When Mexml processes a Machine Edition project's Hardware or EGD configuration files
it can list how the program variables are mapped onto those resources. For the
hardware it will list the rack, slot, card, I/O point address, along with variable data type,
name and description. While for the EGD configurations it will list all of the produced
and consumed exchanges (with IP addresses) along with the variable data type, name
and description.

Mexml - Users Manual Page 7 Introduction

During the processing of each program block, Mexml will automatically keep track of the
dependency order as well as whether the block has been called or not. This allows it to:

• Display the full dependency order list of the program blocks. This information
is necessary to know when manually importing program blocks into another
project.

• List the full call tree showing what program blocks are called and in what order,
as well as what program blocks are not called anywhere in the program.

Note that currently Mexml can only process Ladder Logic and Structured Text program
blocks.

Project Analysis
After analyzing a project, Mexml can produce two different types of reports: The Program
Structure report and the Variables Usage report. The former identifies aspects related to
the structure of program blocks and their instructions. The later identifies how variables
are utilized by those program blocks and instructions.

Program Structure

The Program Structure report extracts information related to the internal structure of the
Machine Edition project. This report includes items such as:

• List program blocks that are used/not used.
• List the order of program block dependency and calls.
• Identify variables that are mapped to the same address.
• Identify variables with overlapping addresses.
• Identify variables in Function Blocks (FB) that are global to that FB, and will be

shared by all instances of that FB.
• Identify program instructions that access addresses outside of a particular

variables size.
• List chains of variables that are aliased from one to another.
• Display a text representation of Ladder Logic and Structured Text instructions.

Mexml - Users Manual Page 8 Introduction

Variable Usage Report

The Variable Usage Report list all the variables referenced in project that meet any
combination of 6 well defined criteria. These criteria are:

Access Actions used to access a variable, such as Read, Write, being in an
Input Scan or being in an Output scan, etc.

Memory In what section of the PLC's memory that the variable is defined,
such as %I, %Q, %M, %R, Symbolic, etc.

Type The type variable such as Local, Global, Function Block Input/Output,
etc.

Name The name of the variable as defined by a regular expression.

Address The address of the variable as defined by a regular expression.

Description The description of the variable as defined by a regular expression.

These criteria enable the selection of the variables included in the report to be very
specific. For example, the report could only include all variables that:

• Are a part of an Input scan,
• (and) That have not been Read by any instruction,
• (and) That have a %M Address,
• (and) Are defined as a Local variable of a program block,
• (and) Have a Name that starts with “Gantry”,
• (and) With an Address in the range of %M1000 to %M1999,
• (and) Have the text “Fred” in the middle of the Description.

Mexml - Users Manual Page 9 Introduction

Report Examples
The following are two reports that were generated from the sample project included with
the Mexml program. Both of these reports were generated by the included
VarAnalyisis command. The first report details any structural issues with the target
project, while the second specifically lists variables that have not been referenced —
including Inputs not read, Outputs not written to, and other variables that have been
read but never initialized.

Program Structure Report

The VarAnalysis Program Structure report looks at the structure of the project. In
this particular example, the options selected for the report included displaying warning
and error messages related to the program code itself, and also displaying the call order
of the program blocks.

This report discovered two definite errors, as well as two items that could potentially be
errors depending on the intention of the programmer. The two errors are:

• A data transfer in POU AABlock will exceed the size of the variable SmallArray
• Variables Number2 and Number1 overlap in their addresses.

The two potential errors are:

• The variable TEMP2 is not local to the Bfunction function block, and is a global
variable.

• Program block EEBlock is not called anywhere in the program.

None of these issues are detected by Machine Edition.

The text of the report is:

Mexml version 2.0.48.14195
Started processing at 12/30/2014 2:39:30 PM
8 out of a total of 8 POUs will be processed
** ERR In POU AABlock, rung 7, Data transfer will exceed size of Variable SmallArray↩
 by 4 INT
++ Warn In POU BFunction Interface, Local Variable TEMP2 is not a member of the↩
 Function Block and will be shared with all BFunction instances
** ERR In Propagating mapped address variables, Number2, DINT, %R00022 overlaps↩
 Number1, DINT, %R00021

##################
 POU Call order
##################

 ==============================
 Blocks that are not called
 ==============================
 EEBlock

Mexml - Users Manual Page 10 Introduction

 ==========================
 Blocks that are called
 ==========================
 _MAIN
 Setup
 CCBlock
 AABlock
 BFUNCTION
 DDBlock
 AABlock
 BFUNCTION
 BBBlock

Finished processing all of the reports

Finished processing at 12/30/2014 2:39:31 PM

Variable Usage Report

The VarAnalysis Variables report describes how variables within the project were
defined and accessed. EG Defined as Inputs, Outputs or Internal, and if they were
Read or Written. The Variables report does not explicitly identify problems with
particular variables, instead the report can be used to filter for particular patterns in how
variables were defined and accessed, and hence highlight areas within a program could
be problematical. In this particular example, the report has been defined to only list out
variables that are either:

• Not part of the Input Scan, and have been Read, but not Written. Such
variables are potentially uninitialized.

• A part of the Input Scan, but have not been Read. Such variables are Input
I/O that have not been used.

• A part of the Output Scan, but have not been Written. Such variables are
Output I/O that have not been used.

In the following example:

• BoolDataIn[2] is an Input I/O variable (in this case an EGD signal) that has
not been Read.

• BoolDataOut[3] is an Output I/O variable (in this case an EGD signal) that has
not been Written.

• Data_5 is an internal variable that has been Read, but has not been Written to
by any part of the project.

This can be inferred from the entries in the Access column, where an alphabetic entry in
a particular numbered column indicates a characteristic, while a dash indicates lack of
that same characteristic.

• I in column 1 indicates an Input definition (either physical or EGD).

Mexml - Users Manual Page 11 Introduction

• R in column 2 indicates that the variable was Read.
• W in column 3 indicates that the variable was Written.
• Q in column 7 indicates an Output definition (either physical or EGD).

The text of the report is (with about 160 variables removed for clarity):

##
 Variables Report, created at 12/30/2014 2:39:31 PM
##

 =====================
 Report Parameters
 =====================

    ~~~~~~~~~~~~~~~~
      Source Files
    ~~~~~~~~~~~~~~~~
 Program: J:\Mexml\Example\Mexml\MexmlSample\ExportedFiles\Code*.xml
 Hardware Configuration: ↩
 J:\Mexml\Example\Mexml\MexmlSample\ExportedFiles\Config*.hwc
 EGD Configuration: ↩
 J:\Mexml\Example\Mexml\MexmlSample\ExportedFiles\Config*.egd
 Block Interface: J:\Mexml\Example\Mexml_Mexml\LibraryDefs*.txt
 Preload list: J:\Mexml\Example\Mexml\MexmlSample\ExportedFiles\Variables*.xml
 Variable Force: J:\Mexml\Example\Mexml\MexmlSample\LocalFiles\Forces*.txt

    ~~~~~~~~~~~~~~~~~~~~~
      Filter Parameters
    ~~~~~~~~~~~~~~~~~~~~~
 Name Regex: -fRN ^[^\#]
 Access Criteria: -fA iwR/Ir/Qw
 iRw [Not InputScan] [Read] [Not Write]
 or Ir [InputScan] [Not Read]
 or Qw [OutputScan] [Not Write]

 ==============
 Sort Order
 ==============
 (Default to By Name)

 =========
 Other
 =========
 Selected Columns: -rCS NDACE ([Name] [Data Type] [Address] [Access Criteria]↩
 [Description])

###
 Report Data
###

 Access
Name Type Address 1234567 Description
-------------------- -------- ------- ------- ----------------------------------
BoolDataIn BOOL[8] I------ Data in from EGD exchange
BoolDataIn[2] BOOL I------ EGD data in bit 2
BoolDataIn[4] BOOL I------ EGD data in bit 4
BoolDataIn2 BOOL -R----- EGD data in bit 2

Mexml - Users Manual Page 12 Introduction

BoolDataIn4 BOOL -R----- EGD data in bit 4
BoolDataOut BOOL[8] ------Q Data sent to remote EGD exchange
BoolDataOut[3] BOOL ------Q EGD data out bit 3
BoolDataOut[6] BOOL ------Q EGD data out bit 6
Data_5 INT %R00154 -R----- Data number 5
Data_6 INT %R00155 -R----- Data number 6
DDBlock.CLR_Fancy BOOL -R----- Clear the function
EGDConsExchgStatus WORD I------ EGD consumed exchange 1 status
EGDProdExchgStatus WORD ------Q EGD produced exchange 1 status
...
IntDataIn INT[2] I------ Data in from EGD exchange
IntDataIn[1] INT I------
IntDataOut INT[2] ------Q Data sent to remote EGD exchange
IntDataOut[1] INT ------Q
LostAtSea BOOL %Q00002 ------Q Operator has been lost at sea
Number1 DINT %R00021 -R----- This is number 1
Number2 DINT %R00022 -R----- This is number 2
Q00008 BOOL %Q00008 ------Q

183 variables matched the selection criteria

Mexml - Users Manual Page 13 Introduction

Licensing
The Mexml program requires a valid license in order to run, however the method used to
license it is straight forward and non-intrusive, and only involves copying the license file
to the Mexml installation directory, and does not require any further or ongoing external
Internet connection.

There are several types of licenses available for Mexml:

Trial Enables a subset of Mexml functionality, and is will be in compliance for all
versions of Mexml and for all time. The standard Mexml installation comes
with a trial license by default.

Standard Enables the full set of Mexml functionality, but is limited to the version of
Mexml that it was created for, plus two major versions. However the
license will never expire. This type of license can be purchased directly
from Joalah Designs LLC

Special Enables features of Mexml on a custom basis of time and version. EG
Enabling all features for only a 2 week period. This type of license can be
obtained from Joalah Designs LLC on a case by case basis.

To expand on the Standard license compliance with an example. If a license for v3.1 of
Mexml is purchased, then that license remains valid for versions v3.2, v3.3, .. , v4.0, v4.1,
.. , v4.9, v5.0, v5.1 of Mexml. The license will not be valid for v5.2 onwards. The license
will however remain valid for all versions of Mexml less than v5.2, and will never expire.
Finally, there is a significant discount for renewing an Mexml license.

When copying a new license to the Mexml installation directory, you do not have to
delete or remove any previous licenses. Mexml will scan all the available licenses and
automatically use the most permissive license.

The following tables list the functionality available with the Trial and Standard licenses:

Source Files

These items specify what data Mexml will process:

Source File Items Trial Standard

Program Block files X X
EGD Definition files X
Hardware Definition files X
Additional pre-loaded lists of variables X
Lists of variables forced to particular Access Modes X
Function Block Interface definitions X

Mexml - Users Manual Page 14 Introduction

Source File Processing

These items specify how the source data will be processed:

Source Processing Items Trial Standard

Skip analysis of Program Blocks X
Skip processing Function Blocks X
Give auto-generated variables a blank description X

Source File Messages

These items specify the messages that will be generated in the Program Structure
report:

Source Message Items Trial Standard

Generate all messages X
Suppress Warning messages X
Suppress all messages X
Filter messages by Program Block name X
Ladder Logic basic messages X X
Ladder Logic Derived and UDT data type messages X
Ladder Logic annotate instructions with their ID number X
Ladder Logic Suppress rung numbers X
Structured Text basic messages X X
Structured Text Derived and UDT data type messages X
Structured Text annotate code with Read/Write markers X
List order that Mexml processes source files X
EGD Definition file messages X
Hardware Definition file messages X
Pre-loaded Variable file messages X
Variable Force file messages X
Function Block Interface definition file messages X
Linked variable messages X
List the generated Variable Reports X X
Specify output file for source messages and reports X

Mexml - Users Manual Page 15 Introduction

Program Structure Reports

These items specify additional information included in the Program Structure report:

Program Structure Items Trial Standard

List Program Block call order X
List Mapped Address variables X

Variable Report Generation

These items specify how the Variables Report is generated:

Variable Report Items Trial Standard

Generate Variable Access reports X X
Specify the name of the Variable Access report X X
Specify the directory of the Variable Access reports X
Define the Variable report parameters in an external file X
Filter Variables by Access (Input, Output, Read, Write etc) X
Filter Variables by Memory (Input, Output, Memory etc) X X
Filter Variables by Name X
Filter Variables by Address X
Filter Variables by Description X
Filter Variables by Type (Local, Global etc) X X
Choose sort order of the Variables in the report X
Select the columns displayed in the report X X
Select the width of the columns in the report X X
Generate the report as a CSV file X
Explain the columns in the report X X

Other

These items specify displaying Mexml version and licensing information:

Other Items Trial Standard

Display the Mexml version X X

Mexml - Users Manual Page 16 Introduction

Other Items Trial Standard
Display the Mexml license currently being used X X
Display available Mexml licenses X X
Display Mexml help X X

Validation

In addition to using Mexml to determine the validity of a license, the Mexml companion
application LicScan can be used to directly validate Mexml licenses. This application
inspects a particular license and lists all of the information contained in it. It also allows
for the compliance of the license to be tested against an arbitrary version number.

The LicScan program is available separately as Windows .msi installation file.

Mexml - Users Manual Page 17 Introduction

Installation
Program

Overview
Mexml is distributed as a standard Windows Installer file (.msi), so that installation (and
removal) of the program is very easy. However this does assume that you have the
requisite Windows permissions to install software on the target computer.

The installer file will be typically named like:
MexmlApplication.2.1.0.7.msi

Where the numbers after the MexmlApplication name represent the version of Mexml
that will be installed. These numbers are encoded as:

MajorVersion.MinorVersion.Release.BuildNumber

So that using the example above, the details are:

MajorVersion 2
MinorVersion 1
Release 0
BuildNumber 7

The MajorVersion/MinorVersion values are used to determine license conformance.
The Release and BuildNumber are not used for with the licensing and are internal
designations of a particular Mexml version.

Finally the distributed .msi file (as well as the actual Mexml application) is digitally signed
by Joalah Designs LLC in order to assert the provenance of the file.

Mexml - Users Manual Page 18 Installation

Process
Opening up the Mexml .msi file will start the installation process, and will present the
first dialog box:

By clicking on 'Next', the Mexml license agreement is presented. Installation cannot
continue unless this license is agreed to (by checking the 'Accept terms' checkbox):

Mexml - Users Manual Page 19 Installation

After agreeing to the license terms, and then clicking on 'Next', the location to where
Mexml will be installed to, is displayed. It is recommended that this default location
should be utilized. Note that the location shown in the example is where Mexml will be
installed on a 32-bit Windows system. On a 64-bit system, it will be installed to:

C:\Program Files (x86)\JoalahDesigns\Mexml\Mexml

After the installation location has been selected, and 'Next' clicked on, Mexml is now
ready to install:

Mexml - Users Manual Page 20 Installation

When 'Install' is clicked, then actual process of installing the Mexml files will begin:

However, depending on the permissions and the local policies that are in effect,
Windows may ask the for confirmation of the installation prior to actually installing the
Mexml files:

Mexml - Users Manual Page 21 Installation

After the installation process has completed, the final confirmation dialog is displayed.
At this point Mexml is ready to be used, (however additional licenses may need to be
installed before the full set of Mexml features can be used):

Mexml - Users Manual Page 22 Installation

Installed Files
The Mexml installation process installs the following typical files. Note that it also adjusts
the Windows 'PATH' environment variable to include the Mexml execution path, which
allows Mexml to be called directly from a Windows command line.

DotNetZip_License.rtf
Ionic.Zip.dll
Joalah_PublicKey.xml
log4net.dll
Log4Net_License.txt
Mexml.exe
Mexml.exe.config
Mexml_License.rtf
Mexml_License_Trial_JoalahDesigns_Never.xml
Rhino.Licensing.dll
Rhino_License.txt

These files include:

• The code required for Mexml's functionality.
• Joalah Design's Public Key file (required for operation of the licensing).
• Text of all agreed to licenses, including those of 3rd the party modules used by

Mexml (DotNetZip, Ionic.zip, Log4net and Rhino.Licensing), as required by
their usage terms.

• A non-expiring Mexml trial license.

Mexml - Users Manual Page 23 Installation

Licenses

Trial
Mexml is supplied with a trial license that only enables a subset of the program's full
functionality. This license is will never expire and will be valid for any version of Mexml
released in the future. It is installed during the Mexml installation process and named:

Mexml_License_Trial_JoalahDesigns_Never.xml

Standard
In order to use the full functionality of Mexml a separate, standard license will need to be
purchased, and then copied to the same location as the trial license (which is typically
the folder in which the Mexml executable resides).

Currently, licenses can only be purchased by directly contacting Joalah Designs LLC by
sending an email to info@JoalahDesigns.com

Once a license is purchased, it will be delivered as a zipped up XML file, with a name
such as:

Mexml_License_Standard_[Owners Name]_[Time].zip

Where '[Owners Name]' represents the name of the person or organization who
purchased the license. The '[Time]' represents when the license will expire, such as
'Never', or if it is time limited, the date at which it will expire. Note that typically all
Mexml licenses will never expire in time, but will be limited in version only. Time limited
licenses will only be generated under special circumstances.

In order to install the license, simply unzip the file to extract the actual XML license file:

Mexml_License_Standard_[Owners Name]_[Time].xml

Then copy this license file to the folder where Mexml was installed. Once this is done,
Mexml will automatically utilize the new license.

Note that when a new license is copied to the Mexml installation directory there is no
need to delete any previous licenses. Mexml will automatically scan all licenses that it
finds, and then use the license that is the least restrictive.

Mexml - Users Manual Page 24 Installation

Preparation For Use
Directory setup

When using the Mexml program, the files that are to be processed are specified on the
command line. As such these files can be stored in any folder that the program can
access, which while a powerful capability, does open up the possibility of complex and
hard to understand configurations. In order to reduce complexity it is recommended that
a 'regular' directory structure be adopted to hold the ME projects that Mexml will
process. Using a structured approach not only reduces complexity, it also facilitates the
development of batch files that can be used to invoke Mexml to analyze many different
projects using the same Mexml parameters.

The following sections describe a recommended directory structure that has proven
useful for analyzing multiple projects:

Mexml - Users Manual Page 25 Preparation For Use

The above directory structure can be split into two basic parts: The _Mexml section and
the Project sections. The _Mexml section is used to contain items that will be common
to analyzing all ME projects, while the Project sections contain items that are common
to that specific project.

_Mexml

The _Mexml directory is intended to hold items that are common to analyzing each
project.

Commands

The commands directory holds command (batch) files that invoke Mexml in order to
analyze a project.

Through judicious use of command file arguments and other options it is possible to
construct a command file that can analyze specific projects when invoked, and to save
the results back to that project. The Analysis Command File section of this document
will discuss in detail such a command file.

LibraryDefs

The LibraryDefs directory holds the text files that would be passed into Mexml via the
-I <InterfaceFile(s)> command line option. Files located here would be available
for use in analyzing any of the exported Machine Edition projects.

Project

The Project directory contains a series of three sub-directories that hold the data and
results related to a single Machine Edition project analysis project.

Note that this directory is only named Project here as an example. In real life the
directory should be named after the Machine Edition project that it is related to.

Using the suggested Analysis Command File and directory structure, there is no limit to
the number of project directories that can be set up, as long as they are all uniquely
named.

ExportedFiles

The ExportedFiles directory contains a series of three sub-directories that hold the raw
files that have been exported from a Machine Edition project, with different types of files
being exported to their own directory.

Mexml - Users Manual Page 26 Preparation For Use

These sub-directories and their contents are:

Code Program files (*.xml) that contain the project's logic and would be
passed into Mexml via the -X <ProgramFile(s)> command line
argument.

Config EGD (*.egd) and Hardware (*.hwc) configuration files that define
the external connectivity of the PLC, and that would be passed into
Mexml via the -E <EGDFile> and -H <HardwareFile> command
line options.

Variables Files of variables (*.xml) that have been exported from the project,
and would be passed into Mexml via the -P <PreloadFile(s)>
command line option.

LocalFiles
The LocalFiles directory contains a series of four sub-directories that hold analysis
information that has been explicitly created by the user in order to aid analyzing this
particular Machine Edition project.

Commands Similar to the Commands directory in the _Mexml section, this
directory holds command files that invoke Mexml in order to
analyze a project. However these files are expected to perform
project specific analysis.

Forces The Forces directory holds the text files that would be passed into
Mexml via the -V <VarForceFile(s)> command line option. Files
located here would be specific to this particular project.

LibraryDefs Similar to the Commands directory in the _Mexml section, this
directory holds text files that would be passed into Mexml via the -I
<InterfaceFile(s)> command line option. Files located here
would be specific to this particular project.

Variables Similar to the Variables directory in the ExportedFiles section,
this holds variable files (*.xml) that would be passed into Mexml via
the -P <PreloadFile(s)> command line option.

Results

The Results directory is the location where analysis data generated by Mexml will be
saved to. The files that will be written here depend on what actions are performed by
the analysis commands. Typically these files will include a program report (which reports
on the actions of the analysis and the structure of the analyzed project) and a variable
report (which reports on the read/write state of selected variables) for each command.

Mexml - Users Manual Page 27 Preparation For Use

Exporting Files From Machine Edition
In order to utilize all of the functionality of Mexml when analyzing a Machine Edition
project, several different types of data have to be exported from that project. The
following sections show what data should be exported and where this is done within
Machine Edition.

The examples shown will use the sample project MexmlSample to illustrate the steps
needed to export each type of data. In addition, the exported data will be stored in the
previously recommended data structure in order to better re-use analysis commands.

The MexmlSample project is described in detail in a later section, but for the purpose of
exporting the data required by Mexml all that is needed to be known about it is that it:

• Is a simple Rx3i PLC project, with a single rack populated with a PSU, CPU, 2
I/O cards and an Ethernet card.

• Includes 8 program blocks (both Ladder Logic and Structured Text), including
one configured as a Function Block.

• Defines 2 EGD exchanges that produce and consume data.
• Defines over 300 variables that are both local and global to the program blocks.

This represents the minimal project that can illustrate all of Mexml's features. When
viewing this project in Machine Edition's navigator it will appear as:

Mexml - Users Manual Page 28 Preparation For Use

Program Blocks

The main use of Mexml is to analyze the Program Blocks of a Machine Edition project.
The actions required to export these blocks start with (after opening the project in
Machine Edition):

1. Select the “Project” tab within the “Navigator” window
2. Expand the “Logic” section and Right Click on the “Program Blocks”

entry.
3. Then click on the “Export All Blocks to Folder ..” item.

Clicking on the “Export All Blocks to Folder ..” item will open up a dialog box
that is used to select the location to where the exported files will be saved. In keeping in
line with the recommended directory structure for Mexml projects, use this dialog box to:

1. Select the “Code” directory underneath the “ExportedFiles” directory of the
Mexml project.

2. Click on/select the “OK” button.

Mexml - Users Manual Page 29 Preparation For Use

When “OK” is selected, Machine Edition will export all of the Program Blocks to the
selected directory.

Mexml - Users Manual Page 30 Preparation For Use

EGD Configuration

If a project uses EGD to transfer data, the information contained in the EGD
configuration can optionally be used by Mexml in two different ways:

1. Mark the variables referenced in each EGD exchange as either being included
in an Input or Output I/O scan, depending on if that exchange is consuming or
producing data. This assists in determining whether a variable has been read
or written by the project's logic.

2. List out the configuration of each EGD exchange in a manner not provided by
Machine Edition. This aids the user in documenting the flow of data into and
out of a project.

The method used to export the EGD configuration data from a project is:

1. Select the “Project” tab within the “Navigator” window
2. Right Click on the “Ethernet Global Data” item
3. Select the “Export to File..” item.

Mexml - Users Manual Page 31 Preparation For Use

Selecting the “Export to File ..” item will open up a dialog box that is used to
select the location to where the exported files will be saved. In keeping in line with the
recommended directory structure for Mexml projects, use this dialog box to:

1. Select the “Config” directory underneath the “ExportedFiles” directory of
the Mexml project.

2. Click on/select the “Save” button.

When “Save” is selected, Machine Edition will export the EGD configuration file to the
selected directory.

Mexml - Users Manual Page 32 Preparation For Use

Hardware Configuration

The information contained in a project's Hardware Configuration can optionally be used
by Mexml in two different ways:

1. Identify the full span of potential variables defined for each I/O card, rather than
just those referenced with the program.

2. List out the configuration of each I/O card in a manner not provided by Machine
Edition. This aids the user in documenting the flow of data into and out of a
project.

The method used to export the Hardware Configuration data from a project is:

1. Select the “Project” tab within the “Navigator” window
2. Right Click on the “Hardware Configuration” item
3. Select the “Export to File..” item.

Selecting the “Export to File ..” item will open up a dialog box that is used to
select the location to where the exported files will be saved. In keeping in line with the

Mexml - Users Manual Page 33 Preparation For Use

recommended directory structure for Mexml projects, use this dialog box to:

1. Select the “Config” directory underneath the “ExportedFiles” directory of
the Mexml project.

2. Click on/select the “Save” button.

When “Save” is selected, Machine Edition will export the Hardware configuration file to
the selected directory.

Mexml - Users Manual Page 34 Preparation For Use

Variables

When analyzing a project's program blocks, Mexml will build up a list of all the variables
that are referenced within the code. However this list will not include variables that have
been defined but not used in any code. The only way to include non-referenced
variables in the Mexml analysis is to export the complete list of all variables from the
project itself. Mexml can then (optionally) include this list when processing the Program
Blocks.

The method used to export the Hardware configuration data from a project is:

1. Select the “Variables” tab within the “Navigator” window
2. Right Click on the “Target” item of the desired project.
3. Select the “Export ..” item.

Note that you can Right Click on any part of the Variables list in order to get to the
Export item. Doing so on the Target is suggested in order to reinforce the fact that
variables are exported from this particular Target.

Selecting the “Export ..” item will open up a dialog box that is used to select the
location to where the exported files will be saved, as well as the format in which the data
will exported. In keeping in line with the recommended directory structure for Mexml
projects, use this dialog box to:

1. Select the “Variables” directory underneath the “ExportedFiles” directory
of the Mexml project.

Mexml - Users Manual Page 35 Preparation For Use

2. Ensure that the “Save as type” is selected as “Machine Edition(*.xml)”

3. Manually enter the desired name of file. Using the same name for each project
that data is exported from will aid in re-using Mexml analysis commands. A
suggested name for the file where all the variables are export to is “AllVars”

4. Click on/select the “Save” button.

When “Save” is selected, Machine Edition present a dialog box in order to select from
which target variables are being exported. Thus:

1. Ensure that the “Target to Export From” is the target from which the
variables should be exported.

2. Select “OK”

When “OK” is selected, Machine Edition will export the list of variables to the specified
file in the selected directory.

Mexml - Users Manual Page 36 Preparation For Use

Analysis Command File

Introduction
The most efficient way to use Mexml is through the creation and use of Windows
command files that can be reused when analyzing different Machine Edition projects.
This section describes such a command file and it can also be used as the basis for
creating more tailored command files.

The key to developing a re-useable command file is the strict use of a well defined
directory structure to contain the data files exported from the Machine Edition projects.
An example of such a structure has previously been described and that will become the
basis for this example command file. This file is also provided with the MexmlSample
project as the Analysis.cmd file.

The complete Analysis.cmd file is simply:

mexml -X %~dp0..\..\%1\ExportedFiles\Code*.xml -aBD ^
 -E %~dp0..\..\%1\ExportedFiles\Config*.egd ^
 -H %~dp0..\..\%1\ExportedFiles\Config*.hwc ^
 -P %~dp0..\..\%1\ExportedFiles\Variables*.xml ^
 -V %~dp0..\..\%1\LocalFiles\Forces*.txt ^
 -I %~dp0..\..\%1\LocalFiles\LibraryDefs*.txt ^
 -I %~dp0..\LibraryDefs*.txt ^
 -pv ^
 -O %~dp0..\..\%1\Results\AnalysisData.txt ^
 -rV ^
 -rM ^
 -rCS NDACE ^
 -rF %~dp0..\..\%1\Results\AnalysisVars.txt

A variation of the Analysis.cmd file, is also supplied as VarAnalysis.cmd. This file
adds the following additional lines to the Analysis.cmd file:

 -fA iwR/Ir/Qw ^
 -fRN "^[^\#]" ^

These two lines help analyze variables used in a Machine Edition project.

NOTE that the above sample files uses features of Mexml that require a fully licensed
version of the program. In order to demonstrate how to use Mexml when only a Trial
license is available an additional command file (TrialAnalysis.cmd) has been supplied.
This file includes the most functionality that can be achieved with a Mexml Trial license.

The complete TrialAnalysis.cmd file is simply:

Mexml - Users Manual Page 37 Preparation For Use

mexml -X %~dp0..\..\%1\ExportedFiles\Code*.xml ^
 -pv ^
 -rV ^
 -rM ^
 -rCS NDACE ^
 -rF %~dp0..\..\%1\Results\TrialAnalysisVars.txt ^
 > %~dp0..\..\%1\Results\TrialAnalysisData.txt

Deconstruction

Architecture
Both the Analysis.cmd and TrialAnalysis.cmd files rely on several aspects of both
Windows Command files and the recommended directory structure in order to
successfully complete its task. These aspects include:

• The Mexml executable has been correctly installed, and that it can be executed
directly from the command line.

• The command file expects that the recommended directory layout has been
adhered to 100%, with no deviations. As such it can specify directory names
by relative paths, rather than absolute ones.

• The command file takes a single parameter, the name of the base directory to
which the project files have been exported to. Within the command file this
parameter is represented by the “%1” string.

• Within a Windows Command file, the directory that contains the command file
can be referred to as “%~dp0”. This allows the overall directory to be located
anywhere on a computers hard drive, as long as the mexml.exe executable file
can be located and executed by the command file.

• The “^” character represents the line-continuation symbol within a Command
File, and that there are no characters to the right of any of the “^” characters.
As a result Windows sees the Analysis command as a single line of text. If the
“^” character is needed to be used a part of an Mexml option, then the data for
that option will need to be wrapped within quotes in order to protect/hide it
from the Windows command file processing.

Arguments
The instance of Mexml that is executed by the Analysis.cmd file is provided with 13
separate arguments, which cover the most basic operation of the program. Breaking
down these arguments item by item we have:

Mexml - Users Manual Page 38 Preparation For Use

-X Selects the Program Block files that were exported to the Code sub-
directory. By using a parameter of “*.xml”, all files in that directory will be
selected.

-E Selects the EGD Configuration file that was exported to the Config sub-
directory. Even though there can only be one EGD Configuration file, by
using a parameter of “*.egd”, the Analysis Command file does not have to
know the name of the target from which the file was exported from. Note that
if by accident two such files end up in the same directory, then only the first
one will be used. [Req. lic.]

-H Selects the Hardware Configuration file that was exported to the Config
sub-directory. Even though there can only be one Hardware Configuration
file, by using a parameter of “*.hwc”, the Analysis Command file does not
have to know the name of the target from which the file was exported from.
Note that if by accident two such files end up in the same directory, then only
the first one will be used. [Req. lic.]

-P Selects the Variable Preload files that were exported to the Variables
sub-directory. By using a parameter of “*.xml”, the Analysis Command file
does not have to know the names of these preload files. Note that all such
files in this directory will be processed. [Req. lic.]

-V Selects the Variable Force files that were manually created in the Forces
sub-directory. By using a parameter of “*.txt”, the Analysis Command file
does not have to know the names of these files. Note that all such files in
this directory will be processed. [Req. lic.]

-I Selects the Function Block Library Definition files that were manually
created either in the overall LibraryDefs sub-directory, or the projects
LibraryDefs sub-directory. By using a parameter of “*.txt”, the Analysis
Command file does not have to know the names of these files. Note that all
such files in this directory will be processed. [Req. lic.]

-O Defines the file that the Program Structure report will be written to. This is
the AnalysisData.txt file in the Results sub-directory. [Req. lic.]

-rF Defines the file that the Variables report will be written to. This is the
AnalysisVars.txt file in the Results sub-directory.

-pV Causes the Mexml version information to be output to the Program
Structure report file.

-rV Causes the Variables report to be generated.

-rM Includes statistics about the Variables report in the Program Structure
report.

-rCS Selects the columns that will be generated in the Variables report. The
“NDACE” string indicates that the Name [N], Data Type [D], Address [A],

Mexml - Users Manual Page 39 Preparation For Use

Access Criteria [C] and Description [E] columns should all be
generated.

-fA Filters the items included in the Variables report by Access Criteria, so
that only items matching the specified criteria will be included. [Req. lic.]

In the example given, the specified criteria of iwR/Ir/Qw defines three criteria
clauses that will be “Or'ed” together – thus an item needs to only meet one
of the specified criteria in order to be included in the Variables report.
These criteria clauses are:

iwR Variables that are not a part of the Input Scan, and have been
Read without being Written to. These are potentially
uninitialized variables.

Ir Variables that are a part of the Input Scan, but have not been
Read. These are Input I/O that have potentially not been used.

Qw Variables that are a part of the Output Scan, but have not been
Written to. These are Output I/O that have potentially not
been used.

-fRN Filters the items included in the Variables report to those whose name
matches a Regular Expression. [Req. lic.]

In the example given, this expression is “^[^\#]”. The expression is
wrapped in quotes in order to protect the “^” characters from being
processed by the Windows command file processing. The expression itself
will only match variable names that do no start with a “#” character. Thus this
option will eliminate all items like #ALW_ON from the Variables report.

-aBD When Mexml has to automatically generate a variable in order to satisfy a
requirement, this option indicates that description of that variable should be
left blank (as opposed to generating a description that describes where the
variable was created). [Req. lic.]

-sCO Generates the Program Block call order in the Program Structure report.
[Req. lic.]

Notes:

1. The order off these arguments within the Analysis.cmd file is irrelevant.
2. For the arguments that reference files, if those files do not exist then Mexml will

simply generate a warning message and continue on with its processing.
3. Many of these arguments can only be used with a fully licensed copy of Mexml.

Those that are not available with a Trial licensed copy of Mexml are marked as
“[Req. lic.]”.

The above selection of arguments should provide a useful starting point for analyzing
many different Machine Edition projects.

Mexml - Users Manual Page 40 Preparation For Use

Example Invocation
Assuming that the command file is located at
c:\Mexml_mexml\Commands\Analysis.cmd, and that a Windows Command Prompt
has been opened in the c:\Mexml directory, then this file could be invoked to process the
MexmlSample project by entering the following command line:

c:\Mexml>_mexml\Commands\Analysis.cmd MexmlSample

Note that entering this command line is not as cumbersome as it first seems, as using
Windows Auto-Completion through the use of the [Tab] key means that the complete
command line can be created in only 11 key-strokes.

c:\Mexml>_[Tab]\C[Tab]\A[Tab] M[Tab]

On completion of the analysis, the following files will have been created:

c:\Mexml\MexmlSample\Results\AnalysisData.txt
c:\Mexml\MexmlSample\Results\AnalysisVars.txt

The power of the Analysis Command file comes into play when analyzing multiple
projects. Assuming a second Machine Edition project called “Project2” has been
exported to the same set of sub-directories, then this project can analyzed by executing
the command line:

c:\Mexml>_mexml\Commands\Analysis.cmd Project2

Thus Mexml will be invoked with the same set of arguments as was used to analyze the
MexmlSample project, which will result in the following files being generated:

Mexml - Users Manual Page 41 Preparation For Use

c:\Mexml\Project2\Results\AnalysisData.txt
c:\Mexml\Project2\Results\AnalysisVars.txt

Mexml - Users Manual Page 42 Preparation For Use

MexmlSample Project
Overview

Mexml is supplied with a sample Machine Edition project that deliberately includes
several errors and oversights that can easily be made when using Machine Edition.
These “mistakes” have been included to highlight many of the analysis techniques that
Mexml implements, and to show that even in a small project it is hard to manually verify
the quality of a PLC program.

The sample itself is a zipped up file (MexmlSampleProject.zip) that contains the
following items:

• A complete instance of the recommended directory structure.

• Examples of the Analysis.cmd, VarAnalysis.cmd and TrialAnalysis.cmd
files for analyzing general Machine Edition projects.

• Examples of command files for analyzing the MexmlSample in more detail

• The MexmlSample Machine Edition project.

• The complete set of data that has been exported from the MexmlSample, and
saved to the expected directories.

• Manually created files used to assist in analyzing the MexmlSample project.

• Sample results files as created from using the Analysis.cmd and
TrialAnalysis.cmd files. (Note that these files are named in such a way as to
not be overwritten when the actual result files are generated.)

• A set of blank project directories to aid in working with Mexml projects.

All that is required to set up this system to show the capabilities of Mexml is to unzip the
MexmlSampleProject.zip file to a local directory. (And of course have installed Mexml)

The MexmlSample project itself is a simple Rx3i based PLC project that consists of a
single Rack with CPU and I/O cards, and also defines two EGD exchanges. The
program logic is contained in several Program Blocks and includes Ladder Logic,
Structured Text and Function Block definitions. This range of functionality and
techniques covers what is needed in a large number of real world projects, yet the small
size also enables most features of Mexml to be demonstrated with a project that is easy
to comprehend.

Mexml - Users Manual Page 43 MexmlSample Project

Contents
Unzipping the MexmlSampleProject.zip file results in the directory structure of:

There are 3 main directories under the Mexml root directory:

_Mexml Contains commands and data files that can be shared across
multiple Machine Edition projects.

BlankProject A series of directories and empty files that form a template for
analyzing a single Machine edition project.

MexmlSample The complete set of files exported from the MexmlSample Machine
Edition project, laid out in the “BlankProject” style. It also
contains the original Machine Edition project as well as examples of

Mexml - Users Manual Page 44 MexmlSample Project

the results created by the analysis command files.

The contents of each the key directories are:
_Mexml\

Commands\ Analysis.cmd Main analysis command
VarAnalysis.cmd Variable analysis command
TrialAnalysis.cmd “Trial license” command

LibraryDefs\ GlobalLibraryDefs.txt Available to all projects

MexmlSample\

ProjectFile\ MexmlSample.zip Machine Edition project

MexmlSample\ExportedFiles\

Code\ _Main.xml Program Blocks from project
AABlock.xml
BBBlock.xml
BFunction.xml
CCBlock.xml
DDBlock.xml
EEBlock.xml
Setup.xml

Config\ Target1.egd Project's EGD definition
Target1.hwc Project's Hardware definition

Variables\ AllVars.xml All variables from project

MexmlSample\LocalFiles\

Forces\ LocalForces.txt Forces for just this project

LibraryDefs\ LocalLibraryDefs.txt Library Defs for just this project

Results\ _AnalysisData.txt Sample results from analysis files
_AnalysisVars.txt
_VarAnalysisData.txt
_VarAnalysisVars.txt
_TrialAnalysisData.txt
_TrialAnalysisVars.txt

Mexml - Users Manual Page 45 MexmlSample Project

Program Errors

The MexmlSample program deliberately includes several errors in order to highlight the
analysis strengths of Mexml. These errors are both in the structure of the program as
well as in how variables are treated. The following sections document each error, and
how and where it is reported.

Program Structure report

The following issues are reported in the Program Structure report. These issues are
explicitly reported in this report, and (with the exception of the Block not called issue)
are marked in the report as:

** ERR Indicates an issue that Mexml believes is an error in the PLC program.
Such issues are likely to cause incorrect or unexpected operation of the
PLC program.

++ Warn Indicates an issue that needs to be reviewed for correct operation. Such
issues could arise from design decisions and as such Mexml can't
determine whether they are in fact errors or deliberate choices.

Note that in the example Program Structure reports, all of the reported issues appear at
the top of the file. This grouping only occurs due to the set of arguments provided to
Mexml. If arguments requesting the listing of program logic were supplied, then the
errors and warning would appear scattered throughout the report, as close as possible
to the location were the issue was first detected.

The Program Structure reports generated by each of the sample analysis commands,
and in which the issues can be seen are:

_AnalysisData.txt Created by the Analysis.cmd file
_VarAnalysisData.txt Created by the VarAnalysis.cmd file
_TrialAnalysisData.txt Created by the TrialAnalysis.cmd file

Block not called The EEBlock is defined in the project's logic, but is not
called anywhere in the program. This is seen in the “POU
Call order” section of the Program Structure reports.

Bad Transfer Size In the AABlock, a group of contiguous registers is copied to
an array of registers. However the number of registers
copied is larger than the size of the array, and the copy will
overflow past the end of the array. This is reported as an
error (“** ERR”) .

Mexml - Users Manual Page 46 MexmlSample Project

Shared Variable The BFunction function block uses a variable (TEMP2) that is
not a “Member Variable” of the function block. This
means that all instances of this function block will share the
same instance (and value) of the one and only TEMP2
variable. As the intent of the programmer can't be discerned
from the code, Mexml can't determine if this is actually an
error or simply a design choice. Thus this condition is
reported as a warning (“++ Warn”) .

Overlapping Vars The DINT sized variables “Number1” and “Number2” each
require 2 consecutive register locations. So that if
“Number1” was defined at address %R0021, it utilizes
%R0021 and %R0022, and that the next free address to use is
%R0023. However “Number2” is configured to start at
%R0022, and thus partially overlaps the memory of
“Number1”, which can cause data errors in the PLC
program. This is reported as an error (“** ERR”) .

Variables report

The following issues are reported in the Variables report. In general these issues are
discerned from the way that a particular variable has been accessed. For example
having a “Read” access but no “Write” access implies an uninitialized variable.

The Variables reports generated by each of the sample analysis commands, and in
which the issues can be seen are:

_AnalysisVars.txt Created by the Analysis.cmd file
_VarAnalysisVars.txt Created by the VarAnalysis.cmd file
_TrialAnalysisVars.txt Created by the TrialAnalysis.cmd file

Uninitialized Var In the DDBlock, the local BOOL variable CLR_Fancy was used
in a contact, but there is no instruction setting its value. This
is seen by the variable DDBlock.CLR_Fancy only having a
Read “R” access. The root cause of this issue is that
previously in the same program block a typo was made
when creating the instruction that should have set the value
of CLR_Fancy. This resulted in an additional variable
unexpectedly being created with the name CLR_Fancey.

Uninitialized Vars In the EEBlock, the global BOOL variable BoolDataIn2 and
BoolDataIn4 were used in contacts, but there are no
instruction setting their value. This is seen by the variables
BoolDataIn2 and BoolDataIn4 only having a Read “R”

Mexml - Users Manual Page 47 MexmlSample Project

access. The root cause of this issue is that when the
contacts were being defined, a typo was made, and that
instead of entering BoolDataIn[2] and BoolData[4], the
brackets were left off. This resulted in an additional
variables unexpectedly being created with the names
BoolData2 and BoolData2.

Unused Input I/O The EGD Input variables BoolDataIn[2] and
BoolDataIn[4] were defined, but the variables are not
being used anywhere in the program. This is seen by these
variables only having an Input Scan “I” access. While not
using an Input I/O value may be a design choice, in this case
it is an error, and the root cause can be seen in the EEBlock.
This error is a follow-on from the typos that generated the
BoolDataIn2 and BoolDataIn4 Uninitialized Vars error,
where BoolDataIn[2] and BoolData[4] should have been
used for the contacts.

Unused Output I/O The EGD Output variables BoolDataOut[3] and
BoolDataOut[6] were defined, but the variables are not being
used anywhere in the program. This is seen by these
variables only having an Output Scan “Q” access. While
not using an Output I/O value may be a design choice, in
this case it is an error, for which the root cause can be seen
in the EEBlock. The errors are due typos being made when
defining the instructions that should have written the values
of these variables. The typos left of the brackets from the
variable names and unexpectedly cause variables
BoolDataOut3 and BoolDataOut6 to be created.

Uninitialized Vars The variables Data_5, Data_6, Number1 and Number2 are
used in instructions that read their values, but those values
are not being written anywhere in the program. This is seen
by these variables only having a Read “R” access. In these
cases, typos are not to blame, and that instead the code to
write the values is simply missing. Alternatively, the values
were meant to be written by an external source directly into
the program — for example by an HMI. In that case these
variables should be entered into the requisite “Forces”
definition file.

Unused Input I/O The EGD Input variable EGDConsExchgStatus, the
Ethernet card status variables EthernetStatus_1 and
EthernetStatus_2 are defined but the variables are not
being used anywhere in the program. This is seen by these

Mexml - Users Manual Page 48 MexmlSample Project

variables only having an Input Scan “I” access. In these
cases, typos are not to blame, and that the code to use
these variables is simply missing from the program.

Unused Output I/O The EGD Output variable EGDProdExchgStatus is defined
but does not appear to be written anywhere in the program.
This is seen by the variable only having an Output Scan “Q”
access. In this case there is no error, as it is the PLC
system itself that writes the value of this variable. In order to
remove this artifact from being reported, the variable should
be entered into the requisite “Forces” definition file.

Unused Output I/O The physical output variable LostAtSea, is defined but does
not appear to be written anywhere in the program. This is
seen by the variable only having and Output Scan “Q”
access. In this case, typos are not to blame, and that the
code to write this variables is simply missing from the
program.

Unused Output I/O The physical output variable Q00008, is defined but does not
appear to be written anywhere in the program. This is seen
by the variable only having an Output Scan “Q” access. In
this case, that the variables name matches its address
(%Q00008) alludes to there being no user defined variable at
this address, and in fact this location is likely to be spare I/O.

Unused Input I/O The EGD Input variable IntDataIn[1] was defined, but the
variable is not being used anywhere in the program. This is
seen in by the variable only having an Input Scan “I”
access. In this case this is an error for which the root cause
can be seen in the EEBlock. The IntDataIn[1] variable is
a part of the IntDataIn array (which is 2 elements long),
however in the EEBlock where the contents of the
IntDataIn array are copied to another location, a transfer
size of only 1 is specified. This results in IntDataIn[1] not
being read.

Unused Output I/O The EGD Input variable IntDataOut[1] was defined, but
the variable is not being used anywhere in the program. This
is seen by the variable only having an Output Scan “Q”
access. In this case this is an error for which the root cause
can be seen in the EEBlock. The IntDataOut[1] variable is
a part of the IntDataOut array (which is 2 elements long),
however in the EEBlock where the contents of the
InDataOut array are copied from another location, a transfer

Mexml - Users Manual Page 49 MexmlSample Project

size of only 1 is specified. This results in IntDataOut[1]
not being written.

Mexml - Users Manual Page 50 MexmlSample Project

Tips And Tricks
There are many ways that Mexml can be used to analyze a Machine Edition project in
order to highlight aspects of its design and usage. The followings sections present
some of these ways in which Mexml can be used.

Program Blocks

In order to analyze the program blocks, first include them using the “Program files
(.xml) exported from the ME project” argument (-X <ProgramFiles(s)>).

-X path\to\program\files*.xml

The results from analyzing the program blocks will appear in the Program Structure
report. By default this report will be sent to the console output. However it can be
directed to a specific file by using the “Output file for all Source Messages and
Structure Reports” argument (-O <OutputFile>), which can be any valid Windows
file designation.

-O path\to\ProgramReportFile.txt

Program bock call order

The “Program Block Call Order” argument (-sCO) generates the list of program
blocks and displays them in the order that they are processed by the PLC. Using this
argument on a large project allows you to get a top down view on how the project is
structured. In addition this argument also identifies any program blocks that are in the
project, but not called — facilitating the location of dead or overlooked code.

The complete set of arguments can be summarized as:

Mexml -X path\to\program\files*.xml ^
 -O path\to\ProgramReportFile.txt ^
 -sCO

Where the trailing “^” is the Windows Command file line continuation character.

File processing order

The “File Processing Order” argument (-xFO) generates the list of program blocks in
their dependency order, from least dependent to most dependent. This information is
needed when manually transferring a group of program blocks from one project to
another. As although you can export the program blocks in any order, you have to

Mexml - Users Manual Page 51 Tips And Tricks

manually import them from the least to most dependent program block file.

In order to speed up generation of just this data, and not process the entire ME project,
combine the -xFO argument with the “Skip analysis of all Program Blocks”
argument (-xKA).

The complete set of arguments can be summarized as:

Mexml -X path\to\program\files*.xml ^
 -O path\to\ProgramReportFile.txt ^
 -xFO ^
 -xKA

Where the trailing “^” is the Windows Command file line continuation character.

Documentation

Being able to automatically document aspects of a Machine Edition project ensures that
all such documentation is up to date and not subject to the vagaries of manual notes or
inspections.

EGD Exchanges

In order to document the EGD exchanges, first include them with the “EGD
configuration file (.egd) exported from the ME project” argument (-E
<EGDFile>).

-E path\to\egd\configurations*.egd

The details of the EGD exchanges can be listed with the “EGD Configuration
messages” argument (-eM), which will list out the details of each exchange, such as:

• Produced or Consumed
• IP addresses associated with the exchange
• Variables or addresses referenced by the exchange

It is recommended that this is combined with the “Give auto generated variables a
blank description” argument (-aBD) in order to produce an output that is “cleaner”
and hence more easily understood by a person.

The produced EGD documentation will appear in the Program Structure report.

Note that this data can be produced independently from analyzing the project's Program
Blocks.

Mexml - Users Manual Page 52 Tips And Tricks

The complete set of arguments can be summarized as:

Mexml -E path\to\egd\configurations*.egd ^
 -O path\to\ProgramReportFile.txt ^
 -eM ^
 -aBD

Where the trailing “^” is the Windows Command file line continuation character.

Hardware I/O

In order to document the Hardware I/O, first include it with the “Hardware
Configuration file (.hwc) exported from the ME project” argument (-H
<HardwareFile>).

-H path\to\hardware\configurations*.hwc

The details of the I/O can be listed with the “Hardware Configuration messages”
argument (-hM), which will list out the details of each I/O card in the system, such as:

• Rack, slot and model number of the card
• Variables or addresses referenced by the card
• Details of any daughter cards installed on the main card
• Details of any remote I/O (EG Genius, Profibus etc) connected to the card

It is recommended that this is combined with the “Give auto generated variables a
blank description” argument (-aBD) in order to produce an output that is “cleaner”
and hence more easily understood by a person.

The produced Hardware documentation will appear in the Program Structure report.

Note that this data can be produced independently from analyzing the project's Program
Blocks.

The complete set of arguments can be summarized as:

Mexml -H path\to\hardware\configurations*.hwc ^
 -O path\to\ProgramReportFile.txt ^
 -hM ^
 -aBD

Where the trailing “^” is the Windows Command file line continuation character.

Mexml - Users Manual Page 53 Tips And Tricks

Bit Mappings

Machine Edition allows for register type variables (EG INT, DINT, FLOAT etc) to be
located in bit based address spaces (EG %M, %I, %Q etc), and for separate bit based
variables (BOOL) to be mapped into the same addresses.

There are two ways from which the information of these mappings can be ascertained:

1. By processing all of the Program Files in the project through the use of the
“Program files (.xml) exported from the ME project” argument (-X
<ProgramFiles(s)>).

-X path\to\program\files*.xml

2. By processing the all of the variables exported from the Machine Edition project
through the use of the “Preload Variables (.xml) exported from the ME
project” argument (-P <PreloadFile(s)>).

-P path\to\preload\files*.xml

The former will analyze all mappings that are actually used in the program, while the
latter will produce the results faster — although it may include mappings that are not in
use.

The actual details of the mappings can be listed with the “Mapped Address
variables” argument (-sMA), which will list out details of each mapping, such as:

• The base register variable, including its starting address and data type
• The list of all other variables that map into the same address as the base

register

It is recommended that this is combined with the “Give auto generated variables a
blank description” argument (-aBD) in order to produce an output that is “cleaner”
and hence more easily understood by a person.The produced Bit Mapping
documentation will appear in the Program Structure report.

Note that the -sMA argument will list out all variables which have the same or
overlapping addresses, which includes items that are synonyms for individual addresses.

Mexml - Users Manual Page 54 Tips And Tricks

The complete set of arguments can be summarized as:

Mexml -X path\to\program\files*.xml ^
 -O path\to\ProgramReportFile.txt ^
 -sMA ^
 -aBD

Or

Mexml -P path\to\preload\files*.xml ^
 -O path\to\ProgramReportFile.txt ^
 -sMA ^
 -aBD

Where the trailing “^” is the Windows Command file line continuation character.

Uninitialized variables

Machine Edition does not identify uninitialized variables — ones that have been read, but
not written to. Mexml can detect such items through a combination of processing the
Program Blocks and then filtering the resulting Variables report.

The program blocks are included using the “Program files (.xml) exported from
the ME project” argument (-X <ProgramFiles(s)>).

-X path\to\program\files*.xml

The Variables report will be generated when the “Required to report on
Variables” argument (-rV) is specified.

By default the Variables report will be sent to the console output, however it can be
directed to a specific file by using the “Report Filename to save the report data
to” argument (-rF <ReportFile>), which can be any valid Windows file designation. If
the file was specified using a relative path, then the -rF argument can be combined with
the “Base directory for all reports” argument (-rD <ReportDir>) which will pre-
pend the <ReportFile> with the <ReportDir> path.

-rV -rD c:\path\to\all\reports -rF path\to\VarReportFile.txt

In order to better highlight the uninitialized items in the Variables report, that report
should be filtered to only include the desired results. This can be done only including
variables that are not a part of an input (I/O or EGD) scan, that have been read, but have
not been written to. The filtering is done using the “Filter report by variables
that meet the access criteria” argument (-fA <AccessCriteria>), specified as:

Mexml - Users Manual Page 55 Tips And Tricks

-fA iRw

Where:
• A lower case criteria implies “Not Set”, while upper case implies “Set”
• “iRw” represents “Input Scan (Not set)” and “Read (Set)” and

“Write (Not set)”.

Where a lowercase criteria implies “Not Set”, while upper case implies “Set”, and “i”
is “Input Scan (not set)”, “R” is “Read (set)” and “W” is “Write (set)”.

This filtering will not exclude Machine Edition system variables such as #ALW_ON and
#ALW_OFF. The best way to eliminate these from the Variables report is to only match
items whose names do not start with a “#” character, by using the “Filter report by
name Regex” argument (-fRN <NameRegex>). A Regular Expression (Regex) is a
specialized grammar used to describe strings of characters. It is outside the scope of
this document to describe the grammar itself in detail. In addition there are many online
resources devoted to explaining Regexes and how to use them.

The Regex that will eliminate the system variables from the Variables report is:

-fRN "^[^\#]"

The Regex itself is enclosed in quotes in order to stop the Windows command line from
interpreting some of the characters as relevant to the command line. This Regex can be
interpreted as:

1. Match from the start of the name (the first “^”)
2. Any characters in the set defined within “[“ and “]”
3. The set excludes the following character (the second “^”)
4. The literal “#” character defined by “\#”

Thus it excludes all variables whose name starts with “#”.

Finally, the above reporting cannot take into account any external sources that write
directly into the PLCs memory — such as an HMI system. These items can only be
excluded from the Variables report by using the “Force State of Variables as
defined in user created text file(s)” argument (-V <VarForceFile(s)>) to
mark items that are known to be initialized. This would be done by first creating a
VarForceFile with entries like:

Mexml - Users Manual Page 56 Tips And Tricks

// Forces for program

// HMI interface
// The folowing varables are written by the HMI system
WI Variable1
WI Variable2
WI Variable3
WI Variable4
...

Which would force the Write and InputScan Access Criteria of Variable1 to be set.
This file is included for processing by:

-V path\to\VarForceFile.txt

All of these arguments can be summarized as:

Mexml -X path\to\program\files*.xml ^
 -V path\to\VarForceFile.txt ^
 -rV
 -rD c:\path\to\all\reports
 -rF path\to\VarReportFile.txt ^
 -fA iRw ^
 -fRN "^[^\#]"

Where the trailing “^” is the Windows Command file line continuation character.

Unused I/O

Machine Edition does not identify unused I/O – inputs that have not been read, or output
variables that have not written to. Mexml can detect such items through a combination
of processing the Program Blocks and then filtering the resulting Variables report.

The program blocks are included using the “Program files (.xml) exported from
the ME project” argument (-X <ProgramFiles(s)>).

-X path\to\programfiles*.xml

The Variables report will be generated when the “Required to report on
Variables” argument (-rV) is specified.

Mexml - Users Manual Page 57 Tips And Tricks

By default the Variables report will be sent to the console output, however it can be
directed to a specific file by using the “Report Filename to save the report data
to” argument (-rF <ReportFile>), which can be any valid Windows file designation. If
the file was specified using a relative path, then the -rF argument can be combined with
the “Base directory for all reports” argument (-rD <ReportDir>) which will pre-
pend the <ReportFile> with the <ReportDir> path.

-rV -rD c:\path\to\all\reports -rF path\to\VarReportFile.txt

In order to better highlight the unused items in the Variables report, that report should be
filtered to only include the desired results. This can be done only including variables that
are a part of an input (I/O or EGD) scan that have not been read, or are a part of an
output scan (I/O or EGD) that have not been written to. The filtering is done using the
“Filter report by variables that meet the access criteria” argument (-fA
<AccessCriteria>), specified as:

-fA Ir/Qw

Where:

• “/” is interpreted as an “OR” conjunction
• A lower case criteria implies “Not Set”, while upper case implies “Set”
• “Ir” represents “Input Scan (Set)” and “Read (Not set)”
• “Qw” represents “Output Scan (Set)” and “Write (Not set)”

All of these arguments can be summarized as:

Mexml -X path\to\programfiles*.xml ^
 -rV
 -rD c:\path\to\all\reports
 -rF path\to\VarReportFile.txt ^
 -fA Ir/Qw ^

Where the trailing “^” is the Windows Command file line continuation character.

Unused variables

Machine Edition does not identify unused variables — items that have not been read or
written to. Mexml can detect such items through a combination of processing the
Program Blocks, Preloaded variables and then filtering the resulting Variables report.

The program blocks are included using the “Program files (.xml) exported from

Mexml - Users Manual Page 58 Tips And Tricks

the ME project” argument (-X <ProgramFiles(s)>).

-X path\to\program\files*.xml

Because the processing of the Program Blocks will only consider variables that have
been referenced one way or another, Mexml also has to reference the complete set of
variables in order to identify the unused variables. These variables are included using
the “Preload Variables (.xml) exported from the ME project” argument (-P
<PreloadFile(s)>).

-P path\to\preload\files*.xml

The Variables report will be generated when the “Required to report on
Variables” argument (-rV) is specified.

By default the Variables report will be sent to the console output, however it can be
directed to a specific file by using the “Report Filename to save the report data
to” argument (-rF <ReportFile>), which can be any valid Windows file designation. If
the file was specified using a relative path, then the -rF argument can be combined with
the “Base directory for all reports” argument (-rD <ReportDir>) which will pre-
pend the <ReportFile> with the <ReportDir> path.

-rV -rD c:\path\to\all\reports -rF path\to\VarReportFile.txt

In order to better highlight the unused items in the Variables report, that report should be
filtered to only include the desired results. This can be done only including variables that
are neither read nor written, and are not a part of an input or output scan. The filtering is
done using the “Filter report by variables that meet the access criteria”
argument (-fA <AccessCriteria>), specified as:

-fA rwiq

Where:
• A lower case criteria implies “Not Set”, while upper case implies “Set”
• “rwiq” represents “Read (Not Set)” and “Write (Not set)” and

“InputScan (Not set)” and “Output Scan (Not set)”.

Mexml - Users Manual Page 59 Tips And Tricks

All of these arguments can be summarized as:

Mexml -X path\to\program\files*.xml ^
 -P path\to\preload\files*.xml ^
 -rV ^
 -rD c:\path\to\all\reports ^
 -rF path\to\VarReportFile.txt ^
 -fA rwiq

Where the trailing “^” is the Windows Command file line continuation character.

Program Block Interface

In many situations a group of Program Blocks is developed as a self contained set of
instructions that can be considered a single unit of processing. The splitting of the
overall task into multiple blocks aids in design, implementation, code re-use and run
time fault finding or debugging. Mexml further aids in this process by being able to scan
that set of Program Blocks and list out all variables that represent data that flows into or
out of them — thus documenting the effective “Data” Interface. This can be done
through a combination of processing the Program Blocks and then filtering the resulting
Variables report.

The program blocks are included using the “Program files (.xml) exported from
the ME project” argument (-X <ProgramFiles(s)>).

-X path\to\interface\files*.xml

Note that the path should lead only to those Program Blocks that are a part of the
Interface being documented.

The Variables report will be generated when the “Required to report on
Variables” argument (-rV) is specified.

By default the Variables report will be sent to the console output, however it can be
directed to a specific file by using the “Report Filename to save the report data
to” argument (-rF <ReportFile>), which can be any valid Windows file designation. If
the file was specified using a relative path, then the -rF argument can be combined with
the “Base directory for all reports” argument (-rD <ReportDir>) which will pre-
pend the <ReportFile> with the <ReportDir> path.

-rV -rD c:\path\to\all\reports -rF path\to\VarReportFile.txt

In order to highlight the Interface items in the Variables report, that report should be
filtered to only include the desired results. This can be done only including variables that
are:

Mexml - Users Manual Page 60 Tips And Tricks

• Part of an Input Scan
• Part of an Output Scan
• Read but not Written to, and not a part of an Input or Output Scan
• Written to but Not Read, and not a part of an Input or Output Scan

Note that the above will not include variables that are Written to and Read by the set of
Program Blocks, but are referenced by other Program Blocks.

The filtering is done using the “Filter report by variables that meet the
access criteria” argument (-fA <AccessCriteria>), specified as:

-fA I/Q/Rwiq/Wriq

Where:

• “/” is interpreted as an “OR” conjunction
• A lower case criteria implies “Not Set”, while upper case implies “Set”
• “I” represents “Input Scan (Set)”
• “Q” represents “Output Scan (Set)”
• “Rwiq” represents “Read (Set)” and “Write (Not set)” and “Input Scan

(Not set)” and “Output Scan (Not set)”
• “Wriq” represents “Write (Set)” and “Read (Not set)” and “Input

Scan (Not set)” and “Output Scan (Not set)”

All of these arguments can be summarized as:

Mexml -X path\to\interface\files*.xml ^
 -rV
 -rD c:\path\to\all\reports
 -rF path\to\VarReportFile.txt ^
 -fA I/Q/Rwiq/Wriq ^

Where the trailing “^” is the Windows Command file line continuation character.

Simultaneous Multiple Filtering Criteria

The previous examples have all focused on performing a single analysis of a Machine
Edition project. In order to perform multiple, different analysises of the same project,
then it appears that you would have to run each one separately. However Mexml
supports simultaneous and independent filtering a set of Program Blocks, with the
results of each analysis being written to a different report file. Thus you could process a
Machine edition project and in one action generate separate reports for

Mexml - Users Manual Page 61 Tips And Tricks

• Uninitialized Variables
• Unused I/O
• Unused Variables

The key to this functionality is the use of the “List of report parameter
definitions in plain text file” argument (-rP <ReportParamFile>). This
argument reads a text file in which each line defines separate a set of reporting
arguments. These arguments are applied to a common set of source files that are
defined as a part of the main execution of Mexml.

In order to generate the reports previously mentioned, the Mexml arguments common to
all the reports would be defined as:

-X path\to\program\files*.xml
-P path\to\preload\files*.xml
-V path\to\VarForceFile.txt
-rV
-rD c:\path\to\all\reports

The ReportParamFile (RepParam.txt) would be defined as:

-fA iRw -fRN "^[^\#]" -rF UninitializedVars.txt
-fA Ir/Qw -rF UnusedIO.txt
-fA rwiq -rF UnusedVars.txt

Where each line corresponds to a separate report. Note that as this is a pure text file,
the Windows Command file continuation character is irrelevant. This file would be
referred to by using the -rP argument as:

-rP path\to\report\definition\files\RepParam.txt

Thus the complete set of Mexml arguments would be:

Mexml -X path\to\program\files*.xml ^
 -P path\to\preload\files*.xml ^
 -V path\to\VarForceFile.txt ^
 -rV ^
 -rD c:\path\to\all\reports ^
 -rP path\to\report\definition\files\RepParam.txt

Where the trailing “^” is the Windows Command file line continuation character.

Mexml - Users Manual Page 62 Tips And Tricks

Running this command will result in the following files being created:

c:\path\to\all\reports\UninitializedVars.txt
c:\path\to\all\reports\UnusedIO.txt
c:\path\to\all\reports\UnusedVars.txt

With each file only containing its corresponding data, and Mexml only having processed
the Program Blocks the one time.

Compare two systems

Because Mexml produces reports in a pure text format, it is trivial to use a 3rd party
program to compare the reports generated by two different versions of the same
Machine edition project. In general it is useful to compare the code, the I/O and the
variables being used in order to identify the functional differences between the two
versions.

The program blocks are included using the “Program files (.xml) exported from
the ME project” argument (-X <ProgramFiles(s)>).

-X path\to\program\files*.xml

In order to generate a code listing that is geared towards comparing versions, the
following arguments are suggested:

-xLB
-xLRS
-xSB

Where:

• Ladder Logic - Body (Code) messages, (-xLB)
• Ladder Logic - Suppress rung numbers, (-xLRS)
• Structured Text - Body (Code) messages, (-xSB)

These will generate clean Ladder Logic and Structured Text code listings. The
suppression of the Ladder Logic rung numbers is suggested in order to reduce any
comparison “noise” that would be created if a small change in rung numbers occurred.
Such a change could result in a “mis-match” between every line starting at the initial
change and propagating until the end of the Program Block, even if the actual logic itself
remained unchanged.

The EGD exchange data is included by using the “EGD configuration file (.egd)
exported from the ME project” argument (-E <EGDFile>).

Mexml - Users Manual Page 63 Tips And Tricks

-E path\to\egd\configurations*.egd

In order to generate an EGD definition that is geared towards comparing versions, the
following arguments are suggested:

-eM
-eDS

Where:

• EGD Configuration messages, (-eM)
• Suppress the description in the EGD Configuration, (-eDS)

These will generate a clean EGD definition. The suppression of the descriptions is
suggested as differences in descriptions between program versions are purely non-
functional. However, it may useful to identify such changes for example, where the
changing description indicates changed functionality. In which case the -eDS argument
could be left off.

The Hardware I/O is included by using the “Hardware Configuration file (.hwc)
exported from the ME project” argument (-H <HardwareFile>).

-H path\to\hardware\configurations*.hwc

In order to generate a Hardware definition that is geared towards comparing versions,
the following arguments are suggested:

-hM
-hDS

Where:

• Hardware Configuration messages, (-hM)
• Suppress the description in the Hardware Configuration, (-hDS)

These will generate a clean Hardware definition. The suppression of the descriptions is
suggested as differences in descriptions between program versions are purely non-
functional. However, it may useful to identify such changes for example, where the
changing description indicates changed functionality. In which case the -hDS argument
could be left off.

The results from analyzing the program blocks, EGD and Hardware configurations will
appear in the Program Structure report. By default this report will be sent to the
console output. However it should be directed to a specific file by using the “Output
file for all Source Messages and Structure Reports” argument (-O

Mexml - Users Manual Page 64 Tips And Tricks

<OutputFile>), which can be any valid Windows file designation.

-O path\to\ProgramReportFile.txt

The Variables report will be generated when the “Required to report on
Variables” argument (-rV) is specified.

By default the Variables report will be sent to the console output, however it should
be directed to a specific file by using the “Report Filename to save the report
data to” argument (-rF <ReportFile>), which can be any valid Windows file
designation. If the file was specified using a relative path, then the -rF argument can be
combined with the “Base directory for all reports” argument (-rD
<ReportDir>) which will pre-pend the <ReportFile> with the <ReportDir> path.

-rV -rD c:\path\to\all\reports -rF path\to\VarReportFile.txt

In order to better highlight differences in the Variables report between program
versions, only functional information should be included such as:

• Variable Name
• Data Type
• PLC Address
• Access Criteria

This is done through the use of the “Select columns included in the report”
argument (-rCS <ColumnSelect>), which dictates what columns appear in the
Variables report.

--rCS NDAC

Where:

• “N” represents the Variable Name column
• “D” represents the Data Type column
• “A” represents the PLC Address column
• “C” represents the Access Criteria column

It is suggested to leave out the Description column as differences in descriptions
between program versions are purely non-functional. However, it may useful to identify
such changes for example, where the changing description indicates changed
functionality. In which case the Description could be included through the addition of
the “E” column identifier.

Mexml - Users Manual Page 65 Tips And Tricks

Thus the complete set of Mexml arguments would be:

Mexml -X path\to\program\files*.xml ^
 -E path\to\egd\configurations*.egd ^
 -H path\to\hardware\configurations*.hwc ^
 -xLB -xLRS -xSB -eM -eDS -hM -hDS
 -O path\to\ProgramReportFile.txt
 -rV -rD c:\path\to\all\reports ^
 -rF path\to\VarReportFile.txt ^
 -rCS NDAC

Where the trailing “^” is the Windows Command file line continuation character.

Running this command will produce a set of report files that are geared towards
comparing different versions of the same Machine Edition PLC program. Once this
command has been run on both versions, simply use a 3rd party program to compare the
report files and identify the differences.

Mexml - Users Manual Page 66 Tips And Tricks

Program Arguments

Mexml is a command line based program and as such all of its functionality is defined by
its command line arguments. These arguments can be grouped into seven main
sections:

Source File
The Source File arguments determine the raw data that Mexml will process in order
to generate its reports. These include options for Program files as well as
Hardware and EGD configuration, and additional user defined information.

Source Processing
The Source Processing arguments provide control over whether certain Source
File items will be processed by Mexml.

Source Message
The Source Message arguments control the generation of Information, Warning
and Error messages produced when processing the Source File arguments.

Program Structure Report
The Program Structure Report arguments are used to select reporting on selected
aspects of the Source File items.

Variable Access Report Generation
The Variable Access Report Generation arguments control the production of the
Variable Access Report.

Variable Access Report Parameters
The Variable Access Report Parameter arguments determine what variables will be
selected for inclusion in the Variable Access report.

Other
These other arguments are used to display information about the Mexml program
itself, such as version and licensing status.

The following sections provide details on each of the Mexml argument groups. Each
argument within a section is given as the command line flag required to invoke the
argument, then any required parameters, followed by the name of the argument.

Note that arguments surrounded by square brackets (“[“ and “]”) are optional.

Mexml - Users Manual Page 67 Program Arguments

Source File Arguments

Determines the raw data that will be processed by Mexml.

[-X <ProgramFile(s)>] Program Files to process
When this option is specified, Mexml reads and process the contents of the
<ProgramFile(s)> , expecting them to be XML formatted program files
exported from Machine Edition, and typically having the extension “.xml”.

Each of these files contain the instructions and variable definitions that define a
single program block. Mexml extracts the variable definitions and analyses each
instruction to see how it access each particular variable.

The <ProgramFile(s)> can specify any valid Windows path and filename,
including the use of Windows filename wildcards. In cases where the
<ProgramFile(s)> would match multiple files, then all matching files will be
processed.

For example:

-X TestData\Code*.xml

-X TestData\Code\Function1*.xml

In the first case, this will include all XML files in the TestData\Code directory. In
the second case, this will include all program files that start with “Function1”.

When the -X option is not specified, then Mexml will only identify variables that it
encountered through processing the other source file options.

The -X argument is optional.

Mexml - Users Manual Page 68 Program Arguments

[-E <EGDFile>] EGD Configuration file
When this option is specified, Mexml reads and processes the contents of the
<EGDFile>, expecting it to be an EGD Configuration file as exported from
Machine Edition, and typically has the extension “.egd”.

This file is used to identify variables that were not encountered by Mexml when
processing the program files, and also to set the Input and Output Scan access
criteria of variables that are included in Consumed and Produced exchanges.

The <EGDFile> can specify any valid Windows path and filename, including the
use of Windows filename wildcards. However, in cases where the <EGDFile>
would match multiple files, only the first matching file will be processed.

For example:

-E TestData\EGD*.egd

This will include the first file in the TestData\EGD directory that has the
extension “.egd”.

When the -E option is not specified, then Mexml will only identify variables that it
encountered through processing the program files.

The -E argument is optional.

The -E argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 69 Program Arguments

[-H <HardwareFile>] Hardware Configuration file
When this option is specified, Mexml reads and processes the contents of the
<HardwareFile>, expecting it to be a Hardware configuration file as exported
from Machine Edition, and typically has the extension “.hwc”.

This file is used to identify I/O variables that were not encountered by Mexml
when processing the program files.

The <HardwareFile> can specify any valid Windows path and filename,
including the use of Windows filename wildcards. However, in cases where the
<HardwareFile> would match multiple files, only the first matching file will be
processed.

For example:

-H TestData\Hardware*.hwc

This will include the first file in the TestData\Hardware directory that has the
extension “.hwc”.

When the -H option is not specified, then Mexml will only identify variables that it
encountered through processing the program files.

The -H argument is optional.

The -H argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 70 Program Arguments

[-P <PreloadFile(s)>]+ Preload Variables
When this option is specified, Mexml reads and processes the contents of the
<PreloadFile(s)>, expecting them to be an XML file in the format of variables
exported from Machine Edition.

These variables are included prior to processing the program files, and allows for
the inclusion of variables that have not been encountered through the file
processing.

The <PreloadFile(s)> can specify any valid Windows path and filename,
including the use of Windows filename wildcards. In cases where the
<PreloadFile(s)> would match multiple files, then all matching files will be
processed.

The '+' append to the -P option indicates that it can also be repeated as many
times as required in order to include as many different <PreloadFile> files as
required.

For example:

-P TestData\Variables*.xml -P BaseData\Variables\base.xml

This will include all XML files in the TestData\Variables directory and the
base.xml file in the BaseData\Variables directory.

When the -P option is not specified, then Mexml will only identify variables that it
encountered through processing the program files.

The -P argument is optional.

The -P argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 71 Program Arguments

[-V <VarForceFile(s)>]+ Variable Force Definitions
When this option is specified, Mexml reads and processes the contents of the
<VarForceFile(s)> , expecting them to be plain text files that contain a list of
variable names and the Access states to force on those variables.

These forces are processed prior to generating the Variable Access reports, and
allow for the specification of access states that were not explicit in the program
files. For example variables that are read or written by an HMI system.

The Variable Force Definitions file has a simple text format that follows well
defined rules:

1. All blank lines will be ignored.

2. All text including and after “//” or “#” will be deemed as a comment and
will be ignored.

3. Each force definition is made on a single line and can in one of two
formats: “Variable Name” or “PLC Address”. Both formats can be
freely mixed within the Force Definition file.

4. The Variable Name format consists of two fields separated by
whitespace. The first fields is the list of forces to apply to the variable
and the second field is the name of the variable to which the forces will
be applied. This name can be any valid variable name that Mexml has
encountered when processing the source files.

5. The PLC Address format consists of three fields separated by
whitespace. The first field is the same as for the Variable Name format
and is the list of forces to apply. The second field is the base address at
which to start applying those forces, and can be any valid PLC address.
The third field is the number PLC addresses to which the forces will be
applied. For example for fields 2 and 3 being: %M101 100, the same
forces will be applied to the PLC memory addresses %M101 through to
%M200.

6. In both formats the list of forces can be selected from the following
criteria. At least one force has to be specified for each definition, and
multiple forces have to be grouped together with no whitespace between
them.

The Force criteria are specified as:

i Is Not Input Scan
I Is Input Scan
q Is Not Output Scan
Q Is Output Scan
r Is Not Read

Mexml - Users Manual Page 72 Program Arguments

R Is Read
w Is Not Written
W Is Written
s Is Not Computed Read
S Is Computed Read
x Is Not Computed Write
X Is Computed Write
b Is Not Block Access
B Is Block Access

Where each of the different actions are interpreted as:

Input Scan A physical input signal (EG %I or %AI), or
included in an EGD Consumed exchange.

Output Scan A physical output signal (EG %Q or %AQ), or
included in an EGD Produced exchange.

Read Has been explicitly read from anywhere in a
program file.

Written Has been explicitly written to anywhere in a
program file.

Computed Read An array element that has been read from by
an instruction where the index to the array
was a value contained in another variable. As
such the actual array index that was read from
is only know during program execution.

Computed Write An array element that has been written to by
an instruction where the index to the array
was a value contained in another variable. As
such the actual array index that was written to
is only know during program execution.
Block Access A Function Block variable
that contains all local variables used by that
block.

Mexml - Users Manual Page 73 Program Arguments

An example of the files format is:

// Forces for program

// HMI interface
WQ Variable3
WQ Variable4
RI Variable5
RI Variable6

W VarArray[10] // We know element 10 of VarArray is written

I %M101 100 // Input block from Quickpanel
Q %M201 100 // Output block to Quickpanel

The <VarForceFile(s)> can specify any valid Windows path and filename,
including the use of Windows filename wildcards. In cases where the
<VarForceFile(s)> would match multiple files, then all matching files will be
processed.

The '+' append to the -V option indicates that it can also be repeated as many
times as required in order to include as many different <VarForceFile> files as
required.

For example:

-V TestData\Data\Forces_*.txt -V BaseData\Data\Test.txt

This will include all files that start with Forces_ in the TestData\Data directory,
and the Test.txt file from the BaseData\Data directory.

When the -V option is not specified, then the user defined forces will not be
included for processing

The -V argument is optional.

The -V argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 74 Program Arguments

[-I <InterfaceFile(s)>]+ Function Block Interface Definitions
When this option is specified, Mexml reads and processes the contents of the
<InterfaceFile(s)> , expecting them to be plain text files that contain a list of
Function Block Interface definitions.

These definitions are included prior to processing the -X <ProgramFile(s)>
option and allow for the specification of View-Locked Function Blocks for which
there is no available program file.

The Interface Definition file has a simple text format that follows well defined
rules:

1. All blank lines will be ignored.

2. All text including and after “//” or “#” will be deemed as a comment and
will be ignored.

3. The Interface Definitions for multiple Function Blocks can be included in
a single file. Each Function Block definition terminates when a new one
starts, and a Function Block can only ever be defined once.

4. The name of a Function Block at the start of a line in the file designates
the start of the definitions for that function block.

5. The parameter definitions for a single function block are split into 4
columns, each separated by whitespace. In addition the first column has
to have whitespace between itself and the start of the line it is on. Each
column is defined as follow and must be in this order:

A) Class: I for Input, O for Output and X for Input/Output.

B) Name: Any valid ME name, that is unique within its own Function
Block.

C) Type: Any valid ME data type, such as INT, BOOL, WORD, etc.
Array datatypes can be included through the use of square
brackets: BOOL[24], indicating the number of elements in the
array

D) Description: Any valid text description of the parameter.

An example of the files format is:

// Estop Detection block
ESTOPDET
 I IN BOOL[32] Estop Status Array
 I RST BOOL Estop alarm reset
 O Q BOOL[32] Estop alarm Status
 O NE BOOL No Estop Active

Mexml - Users Manual Page 75 Program Arguments

The <InterfaceFile(s)> can specify any valid Windows path and filename,
including the use of Windows filename wildcards. In cases where the
<InterfaceFile(s)> would match multiple files, then all matching files will be
processed.

The '+' append to the -I option indicates that it can also be repeated as many
times as required in order to include as many different <InterfaceFile> files
as required.

For example:

-I TestData\Library\BlockDef?.txt -I BaseData\Library\Base.txt

This will include all files in the TestData\Library directory that start with
BlockDef and have an additional character in their name, as well as the Base.txt
file from the BaseData\Library directory.

When the -I option is not specified, then the user defined Function Block
Interface definitions will not be included for processing.

The -I argument is optional.

The -I argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 76 Program Arguments

Source Processing Arguments

Determines how the Source Files should be processed.

[-xKA] Skip analysis of all Program Blocks
When this option is specified, the -X <ProgramFile(s)> option program blocks
will be read, but not processed. When used in-conjunction with the -xFO option,
this enables the dependency order of a group of program block to be easily
determined.

When the -xKA option is not specified, all program blocks from the -X option will
be processed.

The -xKA argument is optional.

The -xKA argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 77 Program Arguments

[-xKF] Skip processing of Function Blocks
When this option is specified, program blocks from the -X <ProgramFile(s)>
option that are Function Blocks will not be processed.

When the -xKF option is not specified, all program blocks from the -X option will
be processed.

The -xKF argument is optional.

The -xKF argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 78 Program Arguments

[-aBD] Auto-Generated Variables Blank Descriptions
When this option is specified, the descriptions of variables that are automatically
generated by Mexml will be blank.

When the -aBD option is not specified, the descriptions of automatically
generated variables will document the circumstances by which Mexml decided to
generate that variable.

The -aBD argument is optional.

The -aBD argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 79 Program Arguments

Source Message Arguments

Determines what types of Informational, Warning and Error messages will be generated
by Mexml when it is processing the Source Files.

[-mV] Generate All Program Structure messages
When this option is specified, all possible messages will be added to the
Program Structure report.

Note that this option can't be used with the -mQ option.

The -mV argument is optional.

The -mV argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 80 Program Arguments

[-mNW] Suppress Program Structure Warning messages
When this option is specified, no Warning messages will be added to the
Program Structure report. However Informational and Error messages will still
be added.

Note that this option can't be used with the -mQ option.

The -mNW argument is optional.

The -mNW argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 81 Program Arguments

[-mQ] Suppress All Program Structure messages
When this option is specified, no messages will be added to the Program
Structure report.

Note that this option can't be used with the -mV or -mNW options.

The -mQ argument is optional.

The -mQ argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 82 Program Arguments

[-mRN <NameRegex>] Filter source file messages by Name Regex
When this option is specified, only program block names from the -X
<ProgramFile(s)> option that match the given <NameRegex> regular
expression will generate Informational messages.

For example:

-X Testdata\Code*.xml -mRN ^Device1.* -xLB -XLI

Indicates that all program blocks (*.xml) in the Testdata\Code directory will be
processed, but that only those with names that match the ^Device1.* regular
expression (EG start with “Device1”) will generate the -xLB and -xLI
Informational messages that will be added to the Program Structure report.

When the -mRN option is not specified, then all specified messages will be added
to the Program Structure report.

The -mRN argument is optional.

The -mRN argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 83 Program Arguments

[-xLB] Ladder Logic – Body (Code) messages
When this option is specified, a processed version of the code in the body of any
encountered Ladder Logic program block will be added to the Program
Structure report. This processed version will list all instructions in a textual
format, grouped by their rung. By default (unless the -xLRS option is also
invoked) the each instruction will be annotated with the rung number.

Note that these instructions will be listed in a left-to-right, top-to-bottom order
with respect to how the rung is implemented. Thus in complex rungs it will be
typical to see coil instructions listed before the contacts that drive them. If it is
desired to understand the actual processing order, then the -xLA option will
annotate each instruction with its ID number, that indicates which instructions
are the precursors to others.

For example:

====================================
 AABlock [Block, LadderLogic]
====================================

 ~~~~~~~~
   Body
 ~~~~~~~~
 Ladder Logic
 LeftPowerRail

 1 COMMENT Executes the main logic of the AA function

 2 NOCON PumpA_Running
 2 NCCON ControlRmEmpty
 2 COIL PumpLight_1
 2 NOCON PumpB_Running
 2 COIL PumpLight_2

 3 ...

When the -xLB option is not specified, the code will not be added to the
Program Structure report.

Note that all Error and Warning messages related to the processing of the code
will be included in the Program Structure report regardless of the inclusion of this
option. Such messages can only be suppressed through the use of the -mNW
and -mQ options.

The -xLB argument is optional.

Mexml - Users Manual Page 84 Program Arguments

[-xLI] Ladder Logic - Interface messages
When this option is specified, information messages describing the Interface
section of any encountered Ladder Logic program blocks will be added to the
program structure report.

The Interface lists all of the variables that are referenced by a particular program
block. (However it only indicates the data types of non-derived variables. To
see the data types of the derived types, the -xLD option should be used in
addition to this option.)

For example:

====================================
 AABlock [Block, LadderLogic]
====================================

 ~~~~~~~~~~~~~
   Interface
 ~~~~~~~~~~~~~

 globalVars

 Var1l Derived
 Var1l.SubVar1 Derived Comment for SubVar1
 Var1l.SubVar2 Derived Comment for SubVar2
 Var1l.SubVar3 Derived Comment for SubVar3
 Var1l.SubVar4 Derived Comment for SubVar4
 Var1l.SubVar5 Derived Comment for SubVar5
 ...
 Variable3 REAL Comment for Variable3
 Variable4 INT Comment for Variable4
 Variable5 INT Comment for Variable5
 ...

When the -xLI option is not specified, the informational messages will not be
added to the Program Structure report.

Note that all Error and Warning messages related to the processing of the
Interface will be included in the Program Structure report regardless of the
inclusion of this option. Such messages can only be suppressed through the
use of the -mNW and -mQ options.

The -xLI argument is optional.

Mexml - Users Manual Page 85 Program Arguments

[-xLD] Ladder Logic - Derived data type and UDT messages
When this option is specified, information messages describing the Derived data
type and User Defined data type variables used by any encountered Ladder
Logic program blocks will be added to the Program Structure report.

Derived and User defined data types are both forms of compound data types
that can be defined in a program. They are defined in a program block as a
GUID combined with a list of sub-elements that compose their makeup. The
program block then defines a list of variables that are of that data type. This
option lists both the datatype with its GUID and component parts, as well as the
list of variables defined as each data type.

For example:

====================================
 AABlock [Block, LadderLogic]
====================================

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   Derived Type To Variable Mappings
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 Derived Types

 {9F9BDCE1-4B31-4204-8BDB-D82E53A8C7A2}
 SubVar1 INT
 SubVar2 BOOL
 SubVar3 INT
 SubVar4 INT
 SubVar5 BOOL
 ...

 Derived Variables

 Var1 {9F9BDCE1-4B31-4204-8BDB-D82E53A8C7A2} Standard
 Var1.SubVar1 INT
 Var1.SubVar2 BOOL
 Var1.SubVar3 INT
 Var1.SubVar4 INT
 Var1.SubVar5 BOOL
 ...

 Var2 {9F9BDCE1-4B31-4204-8BDB-D82E53A8C7A2} Standard
 Var2.SubVar1 INT
 Var2.SubVar2 BOOL
 Var2.SubVar3 INT
 Var2.SubVar4 INT
 Var2.SubVar5 BOOL
 ...

Mexml - Users Manual Page 86 Program Arguments

Note that in order to avoid duplicating redundant information, Mexml will only
fully expand a particular Derived data type, or variable of that type, the first time
it is encountered. For all subsequent encounters, the reference will be marked
as “(previously processed)”.

When the -xLD option is not specified, the informational messages will not be
added to the Program Structure report.

Note that all Error and Warning messages related to the processing of derived
data types will be included in the Program Structure report regardless of the
inclusion of this option. Such messages can only be suppressed through the
use of the -mNW and -mQ options.

The -xLD argument is optional.

The -xLD argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 87 Program Arguments

[-xLA] Ladder Logic - Annotate instructions with their IDs
When this option is specified in conjunction with the -xLB option, the
instructions in the program listing generated by the -xLB option will be
annotated with their ID numbers, as well as the ID numbers of their parameters.
This allows the actual data flow of a rung to be better visualized from the non-
ordered list of instructions.

For example, the following is the same code without and with annotations:

====================================
 AABlock [Block, LadderLogic]
====================================

 ~~~~~~~~
   Body
 ~~~~~~~~
 Ladder Logic
 LeftPowerRail

 1 COMMENT Executes the main logic of the AA function

 2 NOCON PumpA_Running
 2 NCCON ControlRmEmpty
 2 COIL PumpLight_1
 2 NOCON PumpB_Running
 2 COIL PumpLight_2

 3 ...

====================================
 AABlock [Block, LadderLogic]
====================================

 ~~~~~~~~
   Body
 ~~~~~~~~
 Ladder Logic
 {0}.LeftPowerRail

 1 COMMENT Executes the main logic of the AA function

 2 NOCON {32}.PumpA_Running <= (LeftPwrRail)
 2 NCCON {33}.ControlRmEmpty <= {32}, {63}
 2 COIL {34}.PumpLight_1 <= {33}
 2 NOCON {63}.PumpB_Running <= (LeftPwrRail)
 2 COIL {65}.PumpLight_2 <= {33}

 3 ...

Thus in rung 2, both COIL 34 and COIL 65 are driven by NOCON 33, which in

Mexml - Users Manual Page 88 Program Arguments

turn is driven by NOCON 32 or NOCON 63.

When the -xLA option is not specified, the program listing generated by the -xLB
option will not be annotated with these ID's.

The -xLA argument is optional.

The -xLA argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 89 Program Arguments

[-xLRS] Ladder Logic – Suppress Rung Numbers
When this option is specified in conjunction with the -xLB option, the
instructions in the program listing generated by the -xLB option will have their
rung numbers suppressed. This facilitates comparing the listing files of two
versions of the same program by removing visual data that is likely to differ
between them, but not actually impact on functionality

For example, the following is the same code without and with rung numbers:

====================================
 AABlock [Block, LadderLogic]
====================================

 ~~~~~~~~
   Body
 ~~~~~~~~
 Ladder Logic
 LeftPowerRail

 1 COMMENT Executes the main logic of the AA function

 2 NOCON PumpA_Running
 2 NCCON ControlRmEmpty
 2 COIL PumpLight_1
 2 NOCON PumpB_Running
 2 COIL PumpLight_2

 3 ...

====================================
 AABlock [Block, LadderLogic]
====================================

 ~~~~~~~~
   Body
 ~~~~~~~~
 Ladder Logic
 LeftPowerRail

 COMMENT Executes the main logic of the AA function

 NOCON PumpA_Running
 NCCON ControlRmEmpty
 COIL PumpLight_1
 NOCON PumpB_Running
 COIL PumpLight_2

 ...

When the -xLRS option is not specified, the program listing generated by the

Mexml - Users Manual Page 90 Program Arguments

-xLB option will not be annotated with rung numbers.

The -xLRS argument is optional.

The -xLRS argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 91 Program Arguments

[-xSB] Structured Text – Body (Code) messages
When this option is specified, a processed version of the code in the body of any
encountered Structured Text program block will be added to the Program
Structure report. This processed version will have all program comments and
blank lines of the original code stripped out from it.

For example:

===
 StructText1 [Block, StructuredText]
===

 ~~~~~~~~
  Body
 ~~~~~~~~
 Structured Text
 Variable1 := 1024.0
 Variable2 := Variable1
 Variable3 := 139.21
 ...

When the -xSB option is not specified, the code will not be added to the
Program Structure report.

Note that all Error and Warning messages related to the processing of the code
will be included in the Program Structure report regardless of the inclusion of this
option. Such messages can only be suppressed through the use of the -mNW
and -mQ options.

The -xSB argument is optional.

Mexml - Users Manual Page 92 Program Arguments

[-xSI] Structured Text - Interface messages
When this option is specified, information messages describing the Interface
section of any encountered Structured Text program blocks will be added to the
program structure report.

The Interface lists all of the variables that are referenced by a particular program
block. (However it only indicates the data types of non-derived variables. To
see the data types of the derived types, the -xSD option should be used in
addition to this option.)

For example:

===
 StructText1 [Block, StructuredText]
===

 ~~~~~~~~~~~~~
   Interface
 ~~~~~~~~~~~~~

 globalVars

 Var1l Derived
 Var1l.SubVar1 Derived Comment for SubVar1
 Var1l.SubVar2 Derived Comment for SubVar2
 Var1l.SubVar3 Derived Comment for SubVar3
 Var1l.SubVar4 Derived Comment for SubVar4
 Var1l.SubVar5 Derived Comment for SubVar5
 ...
 Variable3 REAL Comment for Variable3
 Variable4 INT Comment for Variable4
 Variable5 INT Comment for Variable5
 ...

When the -xSI option is not specified, the informational messages will not be
added to the Program Structure report.

Note that all Error and Warning messages related to the processing of the
Interface will be included in the Program Structure report regardless of the
inclusion of this option. Such messages can only be suppressed through the
use of the -mNW and -mQ options.

The -xSI argument is optional.

Mexml - Users Manual Page 93 Program Arguments

[-xSD] Structured Text - Derived data type and UDT messages
When this option is specified, information messages describing the Derived data
type and User Defined data type variables used by any encountered Structured
Text program blocks will be added to the Program Structure report.

Derived and User defined data types are both forms of compound data types
that can be defined in a program. They are defined in a program block by a
GUID combined with a list of sub-elements that compose their makeup. The
program block then defines a list of variables that are of that data type. This
option lists both the datatype with its GUID and component parts, as well as the
list of variables defined as each data type.

For example:

===
 StructText1 [Block, StructuredText]
===

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   Derived Type To Variable Mappings
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 Derived Types

 {9F9BDCE1-4B31-4204-8BDB-D82E53A8C7A2}
 SubVar1 INT
 SubVar2 BOOL
 SubVar3 INT
 SubVar4 INT
 SubVar5 BOOL
 ...

 Derived Variables

 Var1 {9F9BDCE1-4B31-4204-8BDB-D82E53A8C7A2} Standard
 Var1.SubVar1 INT
 Var1.SubVar2 BOOL
 Var1.SubVar3 INT
 Var1.SubVar4 INT
 Var1.SubVar5 BOOL
 ...

 Var2 {9F9BDCE1-4B31-4204-8BDB-D82E53A8C7A2} Standard
 Var2.SubVar1 INT
 Var2.SubVar2 BOOL
 Var2.SubVar3 INT
 Var2.SubVar4 INT
 Var2.SubVar5 BOOL
 ...

Mexml - Users Manual Page 94 Program Arguments

Note that in order to avoid duplicating redundant information, Mexml will only
fully expand a particular Derived data type, or variable of that type, the first time
it is encountered. For all subsequent encounters, the reference will be marked
as “(previously processed)”.

When the -xSD option is not specified, the informational messages will not be
added to the Program Structure report.

Note that all Error and Warning messages related to the processing of derived
data types will be included in the Program Structure report regardless of the
inclusion of this option. Such messages can only be suppressed through the
use of the -mNW and -mQ options.

The -xSD argument is optional.

The -xSD argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 95 Program Arguments

[-xSA] Structured Text - Annotate code with Read/Write markers
When this option is specified in conjunction with the -xSB option, the program
listing generated by the -xSB option will be annotated with markers that indicate
whether a variable had Read or Write access. The annotations involve enclosing
each variable name with a specific type of bracket:

< .. > Write Access
{ .. } Read Access

For example, the following is the same code without and with annotations:

 ...
 Variable1 := 1024.0
 Variable2 := Variable1
 Variable3 := 139.21
 ...

 ...
 <Variable1> := 1024.0
 <Variable2> := {Variable1}
 <Variable3> := 139.21
 ...

When the -xSA option is not specified, the program listing generated by the -xSB
option will not be annotated with these markers.

The -xSA argument is optional.

The -xSA argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 96 Program Arguments

[-xFO] File Processing Order messages
When this option is specified, informational messages related to the order in
which the -X <ProgramFile(s)> option files will be processed, will be added to
the Program Structure report.

For example:

#################################
 Program File Processing Order
#################################

File path: J:\Mexml\TestData\Code

Files sorted from least to most dependent

J:\Mexml\TestData\Code\Setup.xml
J:\Mexml\TestData\Code\AABlock.xml
J:\Mexml\TestData\Code\BFunction.xml
J:\Mexml\TestData\Code\CCBlock.xml
J:\Mexml\TestData\Code\DDBlock.xml
J:\Mexml\TestData\Code\BBBlock.xml
J:\Mexml\TestData\Code_MAIN.xml
J:\Mexml\TestData\Code\EEBlock.xml

Combining this option with the -xKA option indicates the order that a block of
program files needs to be imported into another project.

When not specified, the informational messages will not be added to the
Program Structure report.

Note that all Error and Warning messages related to the processing of the -X
<ProgramFile(s)> option files will be included in the Program Structure report
regardless of the inclusion of this option. Such messages can only be
suppressed through the use of the -mNW and -mQ options.

The -xFO argument is optional.

The -xFO argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 97 Program Arguments

[-eM] EGD Configuration messages
When this option is specified, informational messages related to the processing
of the -E <EGDFile> option will be added to the Program Structure report. The
main use of this option is to document the data that is consumed or produced
by an EGD exchange.

For example:

##########################
 EGD Configuration File
##########################

Processing 1 file from
J:\Mexml\TestData_DBGReports\..\Raven\Data\EGD\

 ==
 Processing J:\Mexml\TestData\EGD\PLC.egd
 ==

  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    Exch01_Prod_Refs [ Produced => 192.168.7.156 ]
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 Named: Exch01_Status
 WORD Exch01_Status

 Named: Source1.Refs
 WORD[10] Produced.Refs
 WORD Produced.Refs[0]
 WORD Produced.Refs[1]
 WORD Produced.Refs[2]
 WORD Produced.Refs[3]
 WORD Produced.Refs[4]
 WORD Produced.Refs[5]
 WORD Produced.Refs[6]
 WORD Produced.Refs[7]
 WORD Produced.Refs[8]
 WORD Produced.Refs[9]

 Addr: %Q00001 32 BOOL
 %Q00001 BOOL System_CtrlOn_IL7
 %Q00002 BOOL Q00002
 %Q00003 BOOL System_CtrlOn_IL8
 %Q00004 BOOL ActTrp_Up_IL8 BOOL
 %Q00005 BOOL ActTrp_Dn_IL8 BOOL
 %Q00006 BOOL ActTrp_StckPos_IL8

When not specified, the informational messages will not be added to the
Program Structure report.

Note that all Error and Warning messages related to the processing of the -E
<EGDFile> option will be included in the Program Structure report regardless of

Mexml - Users Manual Page 98 Program Arguments

the inclusion of this option. Such messages can only be suppressed through the
use of the -mNW and -mQ options.

The -eM argument is optional.

The -eM argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 99 Program Arguments

[-eDS] Suppress EGD Configuration Descriptions
This option only works in conjunction with the -eM option. When the -eM option
is specified, messages describing how variables are allocated to produced and
consumed EGD exchanges are added to the Program Structure report. This
information includes the variables Address, Data Type, Name and Description.

When the -eDS option is specified along with the -eM option, then Description
aspect of the variables will not be added to the Program Structure report. Using
this option can benefit in comparing two different EGD configurations to one
another by removing information that is not relevant to the PLC program.

When the -eM option is specified, and the -eDS option is not specified, then the
Description aspect of the variables will be included in the Program Structure
report.

The -eDS argument is optional.

The -eDS argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 100 Program Arguments

[-hM] Hardware Configuration messages
When this option is specified, informational messages related to the processing
of the -H <HardwareFile> option will be added to the Program Structure report.
The main use of this option is to document the data that is mapped to each I/O
card.

For example:

###############################
 Hardware Configuration File
###############################

Processing 1 file from J:\Mexml\TestData\Hardware\

 ===
 Processing J:\Mexml\TestData\Hardware\PLC_SR.hwc
 ===

  ~~~~~~~~~~~~~~~~~~~~~~~~
    Rack 0 - IC695CHS016
  ~~~~~~~~~~~~~~~~~~~~~~~~

 Slot Card Type
 0 IC695PSA040
 1
 2 IC695CPE305
 ...
 3

 4 IC695ETM001
 Main %I01793 80 BOOL Status Addr
 %I01793 BOOL[80] ETM_Status Ethernet I/F
 %I01793 BOOL ETM_Status[0] 1A full dplx
 %I01794 BOOL ETM_Status[1] 1A 100Mbps
 %I01795 BOOL ETM_Status[2] 1B full dplx
 %I01796 BOOL ETM_Status[3] 1B 100Mbps
 ...

When not specified, the informational messages will not be added to the
Program Structure report.

Note that all Error and Warning messages related to the processing of the -H
<HardwareFile> option will be included in the Program Structure report
regardless of the inclusion of this option. Such messages can only be
suppressed through the use of the -mNW and -mQ options.

The -hM argument is optional.

The -hM argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 101 Program Arguments

[-hDS] Suppress Hardware Configuration Descriptions
This option only works in conjunction with the -hM option. When the -hM option
is specified, messages describing how variables are allocated to explicit
hardware I/O locations are added to the Program Structure report. This
information includes the variables Address, Data Type, Name and Description.

When the -hDS option is specified along with the -hM option, then Description
aspect of the variables will not be added to the Program Structure report. Using
this option can benefit in comparing two different Hardware configurations to
one another by removing information that is not relevant to the PLC program.

When the -hM option is specified, and the -hDS option is not specified, then the
Description aspect of the variables will be included in the Program Structure
report.

The -hDS argument is optional.

The -hDS argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 102 Program Arguments

[-pM] PreLoad Variable messages
When this option is specified, informational messages related to the processing
of the -P <PreloadFile(s)> option will be added to the Program Structure
report.

For example:

##########################
 Preload Variables File
##########################

Processing 1 file from J:\Mexml\TestData\Variables\

 ===
 Processing J:\Mexml\TestData\Variables\AllVars.xml
 ===
 $DrvCommChkTm INT Drive comm check time [ms]
 $ystem_FaultRst BOOL System reset pulse
 AccReg7 WORD[3]
 AccReg7[0] WORD
 AccReg7[1] WORD
 AccReg7[2] WORD

When not specified, the informational messages will not be added to the
Program Structure report.

Note that all Error and Warning messages related to the processing of the -P
<PreloadFile(s)> option will be included in the Program Structure report
regardless of the inclusion of this option. Such messages can only be
suppressed through the use of the -mNW and -mQ options.

The -pM argument is optional.

The -pM argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 103 Program Arguments

[-vM] Variable Force messages
When this option is specified, messages related to processing the -V
<ForceFile(s)> option will be added to the Program Structure report.

For example:

#######################
 Variable Force File
#######################

Processing 1 file from J:\Mexml\TestData\Forces\

 ==
 Processing J:\Mexml\TestData\Forces\Forces.txt
 ==
 I => Aux1.AckFaultTrig
 I => Aux1.ClrFaultTrig
 I => Aux2.AckFaultTrig
 I => Aux2.ClrFaultTrig
 ...

When not specified, the messages will not be added to the Program Structure
report.

Note that all Error and Warning messages related to the processing of the -V
<ForceFile(s)> option will be included in the Program Structure report
regardless of the inclusion of this option. Such messages can only be
suppressed through the use of the -mNW and -mQ options.

The -vM argument is optional.

The -vM argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 104 Program Arguments

[-iM] Function Block Interface Definition messages
When this option is specified, messages related to processing the -I
<InterfaceFile(s)> option will be added to the Program Structure report.

For example:

##
 Function Block Interface Definition File
##

Processing 1 file from J:\Mexml\TestData\

 ===
 Processing J:\Mexml\TestData\ExternalBlocks.txt
 ===

    ~~~~~~~~~~~~
      ESTOPDET
    ~~~~~~~~~~~~
 I IN BOOL[32] Estop Status Array
 I RST BOOL Estop alarm reset
 O Q BOOL[32] Estop alarm Status
 O NE BOOL No Estop Active

 ...

When not specified, the messages will not be added to the Program Structure
report.

Note that all Error and Warning messages related to the processing of the -I
<InterfaceFile(s)> option will be included in the Program Structure report
regardless of the inclusion of this option. Such messages can only be
suppressed through the use of the -mNW and -mQ options.

The -iM argument is optional.

The -iM argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 105 Program Arguments

[-kCP] Linked Variable Chaining and Propagating messages
When this option is specified, information messages related to the Chaining and
Propagating of values between Linked Variables will be added to Program
Structure report. There are three classes of such variables:

1. Variables that have the name of another variable as their PLC address (as
opposed to having a numerical value). Thus the access state of any one
variable in the chain is the combination of access states of all variables
in the chain.

2. Individual array elements that are implicitly linked to the array as a whole.
Thus the access state of an element is that of itself combined with that of
the overall array.

3. Variables that are mapped onto the same address value as another
variable (For example booleans that are mapped onto a word). Thus the
access state of the mapped variables is that of themselves combined
with the that of the variable they are mapped onto.

For example:

##
 Chaining and Propagating variable status
##

 ===
 Extending array non-numeric addresses to elements
 ===
 (No arrays needed their non-numeric addresses extended)

 ==
 Propagating array definition status values to elements
 ==
 BoolDataIn BOOL[8] Irswxbq
 => BoolDataIn[0] IRswxbq OR Irswxbq = IRswxbq
 => BoolDataIn[1] IRswxbq OR Irswxbq = IRswxbq
 => BoolDataIn[2] Irswxbq OR Irswxbq = Irswxbq
 => BoolDataIn[3] IRswxbq OR Irswxbq = IRswxbq
 => BoolDataIn[4] Irswxbq OR Irswxbq = Irswxbq
 => BoolDataIn[5] IRswxbq OR Irswxbq = IRswxbq
 => BoolDataIn[6] IRswxbq OR Irswxbq = IRswxbq
 => BoolDataIn[7] IRswxbq OR Irswxbq = Irswxbq
 ...

 ===
 Chaining variables to their parent variable
 ===
 Simple: ChildVar1 => ParentVar1
 Simple: ChildVar2 => Parentvar2
 ...

Mexml - Users Manual Page 106 Program Arguments

 ==
 Propagating variable status up and down chains
 ==

    ~~~~~~~~~~~~~~~~~~~
      Child to Parent
    ~~~~~~~~~~~~~~~~~~~
 ChildVar1 => ParentVar1
 ChildVar2 => Parentvar2
 ...

    ~~~~~~~~~~~~~~~~~~~
      Parent To Child
    ~~~~~~~~~~~~~~~~~~~
 ParentVar1
 => ChildVar1

 ParentVar2
 => ChildVar2
 ...

 ==
 Propagating mapped address variable to sub-variables
 ==
 %M00105 WORD InputAsWord 16 Bit irsWxbq
 %M00105
 %M00106 BOOL LostKeyBit =>iRsWxbq
 %M00107
 %M00108 BOOL OnFireBit =>iRsWxbq
 %M00109 BOOL SinkHoleBit =>iRsWxbq
 %M00110
 %M00111
 %M00112 BOOL MorningBit =>iRsWxbq
 %M00113
 %M00114
 %M00115
 %M00116
 %M00117
 %M00118
 %M00119
 %M00120

 ===
 Propagating array element status values to definition
 ===

 BoolDataIn BOOL[8] Irswxbq OR Irswxbq = Irswxbq
 ...

When not specified, the messages will not be added to the Program Structure
report.

Mexml - Users Manual Page 107 Program Arguments

Note that all Error and Warning messages related to the Chaining and
Propagation will be included in the Program Structure report regardless of the
inclusion of this option. Such messages can only be suppressed through the
use of the -mNW and -mQ options.

The -kCP argument is optional.

The -kCP argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 108 Program Arguments

[-rM] Variable Report messages
When this option is specified, statistics about the Variable Access report will be
added to the Program Structure report.

For example:

 =================
 Report 1 of 1
 =================
 Directed to file C:\reports\VariableUsage.txt
 Reporting as: Plain text
 Report is built:
 With a name Regex '^(?!(W0|#|T000)).*'
 With all addresses
 With all comments
 With access criteria 'iRw'
 Without memory criteria
 Without type criteria
 Without sort criteria
 7 variables matched the selection criteria

Note that this option will not include any of the actual variable access data.

When not specified, the statistics will not be added to the Program Structure
report.

The -rM argument is optional.

Mexml - Users Manual Page 109 Program Arguments

[-O <OutputFile>] Program Structure report file
When this option is specified, the output of the report will be saved to this
filename, overwriting any previously existing file of the same name. Note that
this does not include data that is generated by the Variable Access report,
however it can include some statistics about that report. See the “-rF” option
for saving the Variable Access report to a file.

The Program Structure report file can be specified using any valid Windows path
and filename combination.

For example:

-O c:\data\reports\StructReport.txt

-O ..\..\reports\StructReport.txt

When the -O option is not specified, the Program Structure report data will be
sent to the console output.

The -O argument is optional.

The -O argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 110 Program Arguments

Program Structure Report Arguments

Reports on various aspects of the program and variable structure (not including variable
access)

[-sCO] Program Block Call Order
When this option is specified, the order of execution of all Program Blocks
specified in the -X <ProgramFiles(s)> option will be listed in the Program
Structure report. In addition this option will also identify any Program Blocks
that were not called for execution.

For example:

 ==============================
 Blocks that are not called
 ==============================
 EEBlock

 ==========================
 Blocks that are called
 ==========================
 _MAIN
 Setup
 CCBlock
 AABlock
 BFUNCTION
 DDBlock
 AABlock
 BFUNCTION
 BBBlock

Shows that the _Main block calls Setup, CCBlock etc. And CCBlock calls
AABlock etc. While the EEBlock has not been called by any of the other POUs.

When not specified, the Call Order report will not be generated.

The -sCO argument is optional.

The -sCO argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 111 Program Arguments

[-sMA] Mapped Address variables
When this option is specified, the mappings of all variables that have overlapping
addresses will be listed in the Program Structure report.

This option is useful to provide a list of items such as bits that have been
mapped onto a Word based variable.

For example:

%M00105 WORD InputAsWord
 %M00105
 %M00106 BOOL LostKeyBit
 %M00107
 %M00108 BOOL OnFireBit
 %M00109 BOOL SinkHoleBit
 %M00110
 %M00111
 %M00112 BOOL MorningBit
 %M00113
 %M00114
 %M00115
 %M00116
 %M00117
 %M00118
 %M00119
 %M00120

Shows 4 boolean variables that have been mapped onto the same address
space as a word variable.

When not specified, the Mapped Address report will not be generated.

The -sMA argument is optional.

The -sMA argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 112 Program Arguments

Variable Access Report Generation Arguments

Determines if and where Variable Access reports will be generated.

[-rV] Generate Variable Access Reports
When this option is specified, Mexml will generate Variable Access reports as
defined by all other reporting arguments.

When not specified, then no Variable Access reports will be generated.

The -rV argument is optional.

Mexml - Users Manual Page 113 Program Arguments

[-rD <ReportDir>] Base directory for all report files
When this option is specified, the <ReportDir> will be prepended to all defined
“-rF <ReportFile>” name options. The combined name will define the actual
filename to where the report data will be saved.

For example:

-rD c:\data\reports -rF ThisReport.txt

Will save the report data to the file “c:\data\reports\ThisReport.txt”. As
such, the -rF option can only specify the file using a relative path.

The benefits of combining the -rD and -rF options come into play when used in
conjunction with the “-rP <ReportParaFile>” option. This enables multiple
reports to be generated from the same source files, with the data from each
report being written to its own specific file.

When the -rD option is not specified, then the destination of the report data will
solely be determined by the -rF option.

The -rD argument is optional.

The -rD argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 114 Program Arguments

[-rP <ReportParamFile>] Specify parameters for multiple reports
When this option is specified, Mexml will process the source files and then
generate multiple Variable Access reports using the Report Parameters that are
stored within the <ReportParamFile>.

The <ReportParamFile> is a simple text file of any arbitrary name and can be
specified using absolute or relative paths. Each line of the file defines the Report
Parameters of an additional report, and the “definition” is simply the list of
Report Parameters as would have been specified directly on the Mexml
command line. The choice of allowable options is any option that is mentioned
in the “Variable Access Report Parameter Arguments” section of this document.

In addition, any text following after either “//” or “#” is consider a comment and
will be ignored, as will any blank lines or extra whitespace.

For example, if the file contained:

// Define all reports
-fM I -rS D -rF Report1.txt
-fM O -rS n -fA w -rF Report2.txt
-fA Q -fRN Output.* -rF Report3.txt

Then this would specify 3 reports with the following Report Parameters:

Report #1 -fM I -rS D -rF Report1.txt
Report #2 -fM O -rS n -fA w -rF Report2.txt
Report #3 -fA Q -fRN Output.* -rF Report3.txt

Because the -rF option was used, each report will be saved to a different file.

When not specified, only a single Variable Access report will be generated,
based on the Report Parameters specified on the Mexml command line.

Note that if the -rP option is specified, then Mexml will still generate a report
based on any Report Parameters that were specified on it s command line.

The -rP argument is optional.

The -rP argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 115 Program Arguments

Variable Access Report Parameter Arguments

Determines how the variable data will be filtered in order to generate the Variable Access
reports, as well as in what format the report will be generated.

Each of the filter criteria types can be independently specified, with the overall report
containing data that matches all of the criteria AND'ed together. For example, if these
criteria are all specified for a specific report:

• Access Criteria of Input Scan
• Memory Criteria of %M
• Type Criteria of Global

Then only variables that are defined as Input Scan AND %M AND Global will appear in
the report.

An example of a Variable Access report is:

###
 Variables Report, created at 3/30/2014 2:35:56 PM
###

 =====================
 Report Parameters
 =====================

    ~~~~~~~~~~~~~~~~
      Source Files
    ~~~~~~~~~~~~~~~~
 Program files: J:\Mexml\TestData\...

 ...

    ~~~~~~~~~~~~~~~~~~~~~
      Filter Parameters
    ~~~~~~~~~~~~~~~~~~~~~
 Name Regex: -fRN ^(?!(W0|#|T000)).*
 Access Criteria: -fA iRw
 iRw [Not InputScan] [Read]
 [No Write]

 ==============
 Sort Order
 ==============
 (Default to By Name)

 =========
 Other
 =========
 Selected Columns: -rCS NDAVCM ([Name] [Data Type]

Mexml - Users Manual Page 116 Program Arguments

 [Address] [Variable Definition]
[Access Criteria] [Memory Group])

###
 Report Data
###

 Definit. Access Mem.
Name Type Address 12345678 1234567 1234
----------------- ---- ------- -------- ------- ----
BoolDataIn2 BOOL IGEV---- -R----- MS--
BoolDataIn4 BOOL IGEV---- -R----- MS--
Data_5 INT %R00154 IGEV--P- -R----- MNR-
Data_6 INT %R00155 IGEV--P- -R----- MNR-
DDBlock.CLR_Fancy BOOL ILEV---- -R----- MS--
Number1 DINT %R00021 IGEV--P- -R----- MNR-
Number2 DINT %R00022 IGEV--P- -R----- MNR-

This shows the source data that was used to compile the report, the parameters used to
select the variables for reporting and the details of each variable. In this case the report
is selecting variables that have been read and not written, IE Uninitialized variables.

The following sections describe all the parameters used to define a single Variable
Access report.

Mexml - Users Manual Page 117 Program Arguments

[-fA <AccessCriteria>] Filter report by each variables Access Criteria
When this option is specified, the report data will only include variables that have
been accessed by the given Access Criteria action. All other variables will be
excluded from the report.

The Access Criteria actions are specified as:

i Is Not Input Scan
I Is Input Scan
q Is Not Output Scan
Q Is Output Scan
r Is Not Read
R Is Read
w Is Not Write
W Is Write
s Is Not Computed Read
S Is Computed Read
x Is Not Computed Write
X Is Computed Write
b Is Not Block Access
B Is Block Access

Where each of the different actions are defined as:

Input Scan A physical input signal (EG %I or %AI), or included in an
EGD Consumed exchange.

Output Scan A physical output signal (EG %Q or %AQ), or included in
an EGD Produced exchange.

Read Has been explicitly read from anywhere in a program file.

Write Has been explicitly written to anywhere in a program file.

Computed Read An array element that has been read from by an
instruction where the index to the array was a value
contained in another variable. As such the actual array
index that was read from is only know during program
execution.

Computed Write An array element that has been written to by an
instruction where the index to the array was a value
contained in another variable. As such the actual array
index that was written to is only know during program
execution.

Mexml - Users Manual Page 118 Program Arguments

Block Access A Function Block variable that contains all local variables
used by that block.

Multiple Access Criteria can be specified, in which case only variables that
match all of the specified criteria will be included in the report.

For example:

-fA iRw

Will only include variables that are not a part of an Input Scan, that have been
Read from, but have not been Written to – which finds variables have potentially
not been initialized.

This option also allows multiple groups of Access Criteria to be specified. Within
each group only variables matching all of the criteria of that group will be
included, but the report will contain the inclusions from all the specified groups.
Multiple groups are specified by concatenating each group with the “/”
character.

For example:

-fA Ir/Ow

Defines two Access Criteria groups: “Ir” and “Ow”. The Ir group will include
variables that have been defined as an Input scan, but have not been Read from.
The Ow group will include variables that have been defined as an Output scan,
but have not been Written to. Combining the results of the two groups will
include all of the Inputs and Outputs of a project that have not been utilized.

When this option is not specified, variables of all Access Criteria types will be
included in the report data.

The -fA argument is optional.

The -fA argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 119 Program Arguments

[-fM <MemoryCriteria>] Filter report by each variables Memory Criteria
When this option is specified, the report data will only include variables of the
given Memory Criteria. All other variables will be excluded from the report.

The Memory Criteria is specified as:

I Input Variables: %I and %AI
O Output Variables: %Q and %AQ
M Memory Variables: %L, %M, %P, %R, %T, %W and <Symbolic>
C Chained/Aliased to another variable
G Global Variables: %G, %GA, %GB, %GC, %GD and %GE
S System Variables: %S, %SA, %SB, %SC

Multiple Memory Criteria can be specified, in which case the variables from all
matching types will be included.

For example:

-fM IO

Will only include variables that are defined as Inputs or Outputs.

When this option is not specified, variables of all Memory Criteria types will be
included in the report data.

The -fM argument is optional.

Mexml - Users Manual Page 120 Program Arguments

[-fRN <NameRegex>] Filter report by Name Regex
When this option is specified, the report data will only include variables whose
names match the given Regular Expression (Regex).

For example:

-fRN ^Unit1.*

Will match all variables whose names start with “Unit1”.

Note that internally Mexml specifies all Regex patterns as being case insensitive.

When this option is not specified, variables of all Names will be included in the
report data.

The -fRN argument is optional.

The -fRN argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 121 Program Arguments

[-fRA <AddressRegex>] Filter report by PLC Address Regex
When this option is specified, the report data will only include variables whose
PLC address matches the given Regular Expression (Regex).

For example:

-fRA ^%Q0*3\d{2}$

Will match all %Q variables whose address is in the range 300 to 399.

Note that internally Mexml specifies all Regex patterns as being case insensitive.
In addition using this option automatically excludes all symbolic variables – EG
variables that do not have a PLC address.

When this option is not specified, variables of all Address values will be included
in the report data.

The -fRA argument is optional.

The -fRA argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 122 Program Arguments

[-fRD <DescriptionRegex>] Filter report by Description Regex
When this option is specified, the report data will only include variables whose
Description matches the given Regular Expression (Regex).

For example:

-fRD “open valve”

Will match all variables that have the text “open valve” anywhere in their
Description.

Note that internally Mexml specifies all Regex patterns as being case insensitive.

When this option is not specified, variables of all Descriptions will be included in
the report data.

The -fRD argument is optional.

The -fRD argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 123 Program Arguments

[-fT <TypeCriteria>] Filter report by each variable's Type Criteria
When this option is specified, the report data will only include variables of the
given Type Criteria. All other variables will be excluded from the report.

The Type Criteria is specified as:

I Function Block Input Variables
O Function Block Output Variables
X Function Block Input/Output Variables
M Function Block (private) Member Variables
G Program Global Variables
L Program Block Local Variables,
U Unknown Variable Types

Multiple Type Criteria can be specified, in which case the variables from all
matching types will be included.

For example:

-fT GL

Will only include variables that are Program Global or Program Block Local. All
others will be excluded from the report.

When this option is not specified, variables of all Type Criteria types will be
included in the report data.

The -fT argument is optional.

Mexml - Users Manual Page 124 Program Arguments

[-rS <SortCriteria>] Sort report by specified order
When this option is specified, the report data is sorted by the given order. The
report data can be sorted on any of three aspects: Name, Address and Data
Type, all of which can be specified either as Ascending (a to z, or low to high) or
Descending order (z to a, or high to low).

Each aspect and its order are specified as:

n Name, Descending order
N Name, Ascending order

d Data Type, Descending order
D Data Type, Ascending order

a Address, Descending order
A Address, Ascending order

The <SortCriteria> can be specified as combinations of each of these
aspects, with the report data being sorted in order by each clause.

For example:

-rS DaN

Will result in the report data being sorted in order by

1. Data Type, Ascending
2. Then within each Data Type, by Address, Descending
3. Then within in each Address, by Name Ascending

When this option is not specified, the report data is sorted by Name Ascending
order.

The -rS argument is optional.

The -rS argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 125 Program Arguments

[-rCS <ColumnSelect>] Select columns included in the report
When this option is specified, only the specified report columns will be included
in the Variable report data.

Each column is identified as:

N Name
D Data Type

A Address
V Variable Definition

C Access Criteria
M Memory Group
E Description

The <ColumnSelect> can be specified as combinations of each of these
identities, with the report data including only the matched columns.

For example:

-rCS NDA

Will result in the report data only including the Name, Data Type and Address
columns.

When this option is not specified, the columns included in the Variable report
default to NDACE.

Note that the order of the columns is always fixed as NDAVCME.

The -rCS argument is optional.

Mexml - Users Manual Page 126 Program Arguments

[-rCW <ColumnWidth>] Select minimum width of report columns
When this option is specified, the width of the identified columns is set to be at
least the specified number of characters.

Each column for which the width can be specified is identified as:

N Name
D Data Type

A Address
E Description

The width of the column is specified by appending an integer value to the
column identifier. For example D34 requests that the Data Type column should
be at least 34 characters wide. The widths of multiple columns can be specified
by concatenating each column definition with a colon. Thus D34:E100 requests
the widths of the Data Type and Description columns.

For example:

-rCW N50:D32:A24:E100

Requests that the width of the Name column is at least 50 characters wide, the
Data Type column at least 32, the Address 24 and the Description 100.

Note:

1. The -rCW option only applies to text formatted reports, and is irrelevant
for CSV formatted reports.

2. The other possible columns in a report all have fixed widths, thus there is
no need to be able to set their widths.

3. This option only requests the minimum width of a particular column. If
any data within a column is larger than this minimum, then the actual
column width will be expanded to include the widest data width.

4. The width of a report column cannot be smaller than the title for that
column.

When this option is not specified (or a particular column width is not defined),
the columns included in the Variable report default to the width of the widest
data in that column.

The -rCW argument is optional.

Mexml - Users Manual Page 127 Program Arguments

[-rC] Generate reports in CSV format
When this option is specified, the report data is generated in a CSV format.

When this option is not specified, the report data is generated in a pure text
format.

The -rC argument is optional.

The -rC argument requires better than a Trial level license in order to be used.

Mexml - Users Manual Page 128 Program Arguments

[-rE] Explain the meanings of columns in the report data
When this option is specified, the meanings of several columns in the report will
be explicitly described. These columns include:

Variable Definition Describes where Mexml found the definition and details
about the variable itself, such as from an Interface
definition or Hardware configuration.

Access Criteria Describes how the variable has been accessed, such as
if it has been read or written.

Memory Group Describes how and where in the PLC memory sections
the variable is defined, such as if it is in Global or Local
memory, or is a Bit or Register based variable.

The Variable Definition comprises 8 different columns of data, with three
columns having multiple values while the others are simple binary flags. The
columns are numbered 1 through 8 and have the definition of:

1. Source of the Variables definition. This describes where in the analysis
process that Mexml first encountered a particular variable. This column
can take on the following values:

D When processing the Derived variable section
of a program block.

E When processing the EGD Configuration
H When processing the Hardware Configuration
I When processing the Interface section of a

program block
L When processing instructions in a Ladder

Logic program block.
S When processing instructions a Structured Text

program block.
- Unknown/undefined definition source.

2. Type of variable. This describes the class of variable, such as being a
Global or Local variable. This column can take on the following values:

G Global to the entire program
L Local to a particular program block.
I Input parameter to a Function Block.
X Input/Output parameter of a Function Block.
M Member of a Function Block.
O Output from a Function Block.
- Unknown/undefined definition class.

Mexml - Users Manual Page 129 Program Arguments

3. Generation of Variable. This column indicates how the variable was
encountered/generated. This column can take on the following values:

A Automatically generated by Mexml when it
encountered a reference to a PLC address that
did not have a variable already defined at that
location.

E Explicitly generated for a source such as a
program block Interface.

- Unknown/undefined generation.

4. Definition is Valid. The internal Mexml quality status of a variables
definition. This column can take on the following values:

V The definition is Valid.
- The definition is not valid.

5. Array definition. Indication that the variable is an array definition. This
column can take on the following values:

A The variable is an Array definition.
- The variable is not an Array definition.

6. Array Element definition. Indicates that the variable is an element of an
array. This column can take on the following values:

E The variable is an Array Element definition.
- The variable is not an Array Element definition.

7. PLC Address. Indicates that the variable has a defined PLC address.
This column can take on the following values:

P The variable has a PLC address.
- The variable does not have a PLC address.

8. Forced Access Criteria. Indicates that the Access Criteria of the variable
has been forced. This column can take on the following values:

F The Access criteria of the variable has been
forced.

- The Access criteria of the variable has not
been forced.

Mexml - Users Manual Page 130 Program Arguments

An example of the Variable Definition columns is:

Definit.
12345678

IGEV----
IGEV----
IGEV--P-
IGEV--P-
ILEV----
IGEV--P-
IGEV--P-

The Access Criteria comprises 7 different columns of data, each being simple
binary flags. The columns are numbered 1 through 7 and have the definition of:

1. PLC Input Scan. Indicates that the variable is a part of an Input scan, for
example being a %I or being a part of a consumed EGD exchange. This
column can take on the following values:

P The variable is a part of an Input scan.
- The variable is a not part of an Input scan.

2. Read. Indicates that that the variable has been explicitly read. This
column can take on the following values:

R The variable has been explicitly read.
- The variable has not been explicitly read.

3. Written. Indicates that the variable has been explicitly written. This
column can take on the following values:

W The variable has been explicitly written.
- The variable has not been explicitly read.

4. Computed Read. Indicates that the variable may have been read by a
computed read. This is a read of an array element where the index
actually being used is computed at execution time. This column can
take on the following values:

S The variable has been read via a computed
read.

- The variable has not been read via a computed
read.

5. Computed Write. Indicates that the variable may have been written by a
computed read. This is a write of an array element where the index
actually being used is computed at execution time. This column can

Mexml - Users Manual Page 131 Program Arguments

take on the following values:
X The variable has been written via a computed

write.
- The variable has not been written via a

computed write.

6. Block access. Indicates that the variable was accessed as a part of a
Function Block definition. This can include being read or
written.Computed Read. Indicates that the variable may have been read
by a computed read. This is a read of an array element where the index
actually being used is computed at execution time. This column can
take on the following values:

B The variable has been accessed via a block
access.

- The variable has not been accessed via a block
access.

7. PLC Output Scan. Indicates that the variable is a part of an Output scan,
for example being a %Q or being a part of a produced EGD exchange.
This column can take on the following values:

Q The variable is a part of an Output scan.

– The variable is not a part of an Output scan.

An example of the Access Criteria columns are:

Access
1234567

--W---Q
IR-----
-RW----
IR----Q
-RW---Q
--W---Q
-RW----

The Memory Group comprises 4 different columns of data, all of which have
multiple values. The columns are numbered 1 through 4 and have the definition
of:

Mexml - Users Manual Page 132 Program Arguments

1. Memory Group. Indicates the Group that the variable is defined in, such
as %I being an input and %G being a global. This column can take on
the following values:

- Does not have a Memory Group, for example it
is a symbolic variable

I Input Memory Group, as it has an %I or %AI
address.

O Output Memory Group, as it has a %Q or %AQ
address.

G Global Memory Group, as it has a %G, %GA, %GB,
%GC, %GD or %GE address

M Memory Memory Group, as it has a %L, %M, %P,
%R, %T or %W address.

C Chained Memory Group, as its address is the
name of another variable.

S System memory Group, as it has a %S, %SA,
%SB or %SC address.

2. Memory Address Type. Indicates the Type of address that a variable has.
This column can take on the following values:

- Does not have a Memory Address
Type.

N Numerical Memory Address Group, as it has
and address such as %M01234 or %Q0567.

S Symbolic Memory Address Group, as it does
not have any address.

I Indirect Memory Group, as its address is the
name of another variable.

3. Memory Size. Indicates the numerical size of a variable. This column
can take on the following values:

- Does not have a Memory Size, as it is an
indirect variable, or a # variable.

B Bit Memory Size, as it has a %I, %Q, %G, %GA,
%GB, %GC, %GD, %GE, %M, %T, %SA, %SB, or %SC
address.

R Register memory Size, as it has a %AI, %AQ,
%L, %P, %R or %W address.

Mexml - Users Manual Page 133 Program Arguments

4. Parent Memory Group. Indicates the Memory Group of the parent of
chained variable. This column can take on the following values:

- Does not have a Parent Memory Group, for
example it is not a chained variable

I Input Memory Group, as its parent has an %I or
%AI address.

O Output Memory Group, as its parent has a %Q
or %AQ address.

G Global Memory Group, as its parent has a %G,
%GA, %GB, %GC, %GD or %GE address

M Memory Memory Group, as its parent has a %L,
%M, %P, %R, %T or %W address.

C Chained Memory Group, as its parents address
is the name of another variable.

S System memory Group, as its parent has a %S,
%SA, %SB or %SC address.

An example of the Memory Group columns is:

Mem.
1234

MS--
MS--
MNR-
MNR-
MS--
MNR-
MNR-

When the -rE option is not specified, the column explanation is not added to
the Variable Access report.

The -rE argument is optional.

Mexml - Users Manual Page 134 Program Arguments

[-rF <ReportFile>] Variable Access report file
When this option is specified, the output of the report will be saved to this
filename, overwriting any previously existing file of the same name. The file can
be specified using any valid Windows path and filename combination.

For example:

-rF c:\data\reports\variableReport.txt

-rF ..\..\reports\variables.csv

If the “-rD <ReportDir>” directory is also specified, it will be prepended to
the “<ReportFile>” name in order to create the complete report filename. (In
which case the report file can only be specified using a relative path.) An
example of these options and the final report filename is:

-rD c:\data -rF this_report\variableReport.txt

c:\data\this_report\variableReport.txt

The benefits of combining the -rD and -rF options come into play when used in
conjunction with the “-rP <ReportParaFile>” option. This enables multiple
reports to be generated from the same source files, with the data from each
report being written to its own specific file.

When this option is not specified, then any generated report data will be sent to
the console.

The -rF argument is optional.

Mexml - Users Manual Page 135 Program Arguments

Other Arguments

These arguments relate to Mexml itself.

[-pv] Display the program version
Displays the current version of Mexml that is installed.

C:\>mexml -pv
Mexml version 2.1.0.7

The -v argument is optional.

Mexml - Users Manual Page 136 Program Arguments

[-lS] Display the chosen license
Displays details of the license currently being used by Mexml. If there is more
than one license available to Mexml, the program will choose what it considers to
be the least restrictive license and use that license.

C:\>mexml -lS
File: C:\Program Files (x86)\JoalahDesigns\Mexml\Mexml\↩
 Mexml_License_Standard_FredNurk_Never.xml
ID = 974262f9-8de5-493e-a986-6c275c37ef7f, Type = Standard, ↩
Status = InCompliance
Expiration: Never Expires
Application: Mexml
Registered to:
 Name: Fred Nurk
 Company: Joalah Designs LLC
 Email: Fred@JoalahDesigns.com

The -lS argument is optional.

Mexml - Users Manual Page 137 Program Arguments

[-lD] Display all licenses
Displays the details of all the licenses that are available to Mexml, as well as the
license that has been selected.

C:\>mexml -lD
Looking for licenses in: C:\Program Files (x86)\↩
 JoalahDesigns\Mexml\Mexml
For licenses that match: Mexml*.xml
With public keys that match: *PublicKey.xml

Discovered 2 potential out of 2 total licenses

All Licenses

 File: C:\Program Files (x86)\JoalahDesigns\Mexml\Mexml\↩
 Mexml_License_Standard_FredNurk_Never.xml
 ID = 974262f9-8de5-493e-a986-6c275c37ef7f,↩
 Type = Standard, Status = InCompliance
 Expiration: Never Expires
 Application: Mexml
 Registered to:
 Name: Fred Nurk
 Company: Joalah Designs LLC
 Email: Fred@JoalahDesigns.com

 File: C:\Program Files (x86)\JoalahDesigns\Mexml\Mexml\↩
 Mexml_License_Trial_JoalahDesigns_Never.xml
 ID = f3b96be6-e715-4fdf-92f7-f36e2de16855,↩
 Type = Trial, Status = InCompliance
 Expiration: Never Expires
 Application: Mexml
 Registered to:
 Name: Joalah Designs
 Email: Info@JoalahDesigns.com

Selected License

 File: C:\Program Files (x86)\JoalahDesigns\Mexml\Mexml\↩
 Mexml_License_Standard_FredNurk_Never.xml
 ID = 974262f9-8de5-493e-a986-6c275c37ef7f,↩
 Type = Standard, Status = InCompliance
 Expiration: Never Expires
 Application: Mexml
 Registered to:
 Name: Fred Nurk
 Company: Joalah Designs LLC
 Email: Fred@JoalahDesigns.com

The -lD argument is optional.

Mexml - Users Manual Page 138 Program Arguments

[-?] Display the program help
Displays the full help data as shown in the previous sections, along with a brief
description of the program, licensing information and where you can get help
online or via email.

C:\>mexml -?
Mexml - Process GE Machine Edition XML files and report on
 usage of variables and program blocks

Copyright (c) Joalah Designs LLC 2014
For support and to report bugs,
send emails to info@JoalahDesigns.com
See www.JoalahDesigns.com for more information

Licensed Level: Standard

Usage: Mexml [-X <ProgramFile(s)>] [-E <EGDFile>]
 [-H <HardwareFile>] [-P <PreloadFile(s)>]
 [-V <ForceFile(s)>] [-D <DefinitionFile(s)>]
 [-kAN] [-kFB] [-aBD] [-mV] [-mNW] [-mQ]
 [-xRN <NameRegex>] [-xLB] [-xLI] [-xLD] [-xLA]
 [-xLRS] [-xSB] [-xSI] [-xSD] [-xSA] [-xFO] [-eM]
 [-eDS] [-hM] [-hDS] [-pM] [-vM] [-dM] [-kCP] [-rM]
 [-O <OutputFile>] [-sCO] [-sMA] [-rV]
 [-rD <ReportDir>] [-rP <ReportParamFile>]
 [-fA <AccessCriteria>] [-fM <MemoryCriteria>]
 [-fRN <NameRegex>] [-fRA <AddressRegex>]
 [-fRD <DexcriptionRegex>] [-fT <TypeCriteria>]
 [-rS <SortCriteria>] [-rC] [-rCS <ColumnSelect>]
 [-rCW <ColumnWidth] [-rF <ReportFile>] [-rE] [-pv]
 [-lS] [-lD] [-?]

Where:
 Source File Arguments

 [-X <ProgramFile(s)>] Program Files (wildcards
 allowed in filename,
 all matches will be used)

 ...

The -? argument is optional.

Mexml - Users Manual Page 139 Program Arguments

	Introduction
	Overview
	Project Analysis
	Program Structure
	Variable Usage Report
	Report Examples
	Program Structure Report
	Variable Usage Report

	Licensing
	Validation

	Installation
	Program
	Overview
	Process
	Installed Files

	Licenses
	Trial
	Standard

	Preparation For Use
	Directory setup
	_Mexml
	Commands
	LibraryDefs

	Project
	ExportedFiles
	LocalFiles
	Results

	Exporting Files From Machine Edition
	Program Blocks
	EGD Configuration
	Hardware Configuration
	Variables

	Analysis Command File
	Introduction
	Deconstruction
	Architecture
	Arguments

	Example Invocation

	MexmlSample Project
	Overview
	Contents
	Program Errors
	Program Structure report
	Variables report

	Tips And Tricks
	Program Blocks
	Program bock call order
	File processing order

	Documentation
	EGD Exchanges
	Hardware I/O
	Bit Mappings
	Uninitialized variables
	Unused I/O
	Unused variables
	Program Block Interface
	Simultaneous Multiple Filtering Criteria

	Compare two systems

	Program Arguments
	Source File Arguments
	[-X <ProgramFile(s)>] Program Files to process
	[-E <EGDFile>] EGD Configuration file
	[-H <HardwareFile>] Hardware Configuration file
	[-P <PreloadFile(s)>]+ Preload Variables
	[-V <VarForceFile(s)>]+ Variable Force Definitions
	[-I <InterfaceFile(s)>]+ Function Block Interface Definitions

	Source Processing Arguments
	[-xKA] Skip analysis of all Program Blocks
	[-xKF] Skip processing of Function Blocks
	[-aBD] Auto-Generated Variables Blank Descriptions

	Source Message Arguments
	[-mV] Generate All Program Structure messages
	[-mNW] Suppress Program Structure Warning messages
	[-mQ] Suppress All Program Structure messages
	[-mRN <NameRegex>] Filter source file messages by Name Regex
	[-xLB] Ladder Logic – Body (Code) messages
	[-xLI] Ladder Logic - Interface messages
	[-xLD] Ladder Logic - Derived data type and UDT messages
	[-xLA] Ladder Logic - Annotate instructions with their IDs
	[-xLRS] Ladder Logic – Suppress Rung Numbers
	[-xSB] Structured Text – Body (Code) messages
	[-xSI] Structured Text - Interface messages
	[-xSD] Structured Text - Derived data type and UDT messages
	[-xSA] Structured Text - Annotate code with Read/Write markers
	[-xFO] File Processing Order messages
	[-eM] EGD Configuration messages
	[-eDS] Suppress EGD Configuration Descriptions
	[-hM] Hardware Configuration messages
	[-hDS] Suppress Hardware Configuration Descriptions
	[-pM] PreLoad Variable messages
	[-vM] Variable Force messages
	[-iM] Function Block Interface Definition messages
	[-kCP] Linked Variable Chaining and Propagating messages
	[-rM] Variable Report messages
	[-O <OutputFile>] Program Structure report file

	Program Structure Report Arguments
	[-sCO] Program Block Call Order
	[-sMA] Mapped Address variables

	Variable Access Report Generation Arguments
	[-rV] Generate Variable Access Reports
	[-rD <ReportDir>] Base directory for all report files
	[-rP <ReportParamFile>] Specify parameters for multiple reports

	Variable Access Report Parameter Arguments
	[-fA <AccessCriteria>] Filter report by each variables Access Criteria
	[-fM <MemoryCriteria>] Filter report by each variables Memory Criteria
	[-fRN <NameRegex>] Filter report by Name Regex
	[-fRA <AddressRegex>] Filter report by PLC Address Regex
	[-fRD <DescriptionRegex>] Filter report by Description Regex
	[-fT <TypeCriteria>] Filter report by each variable's Type Criteria
	[-rS <SortCriteria>] Sort report by specified order
	[-rCS <ColumnSelect>] Select columns included in the report
	[-rCW <ColumnWidth>] Select minimum width of report columns
	[-rC] Generate reports in CSV format
	[-rE] Explain the meanings of columns in the report data
	[-rF <ReportFile>] Variable Access report file

	Other Arguments
	[-pv] Display the program version
	[-lS] Display the chosen license
	[-lD] Display all licenses
	[-?] Display the program help

